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The world is uncertain. 
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Some levels of risk are unacceptable. 



Impact of Uncertainty on Dynamic Systems 
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Uncertainty in  
wind speed causes…	

Uncertainty in  
wind power	

Uncertainty in  
vehicle position	



Motivation: High Penetration of Renewables 

Electrical grid must prepare for high penetration of 
renewables. 

Challenge: Wind and solar are undispatchable, 
intermittent, and unpredictable. 
 



Sustainable Homes 

•  Goal: Optimally control HVAC, window opacity, washer/dryer, e-car. 
•  Objective: Minimize energy cost. 
•  Uncertainty: Solar input, outside temp, energy supply, occupancy. 
•  Risk: Resident goals not satisfied; occupant uncomfortable. 
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Connected Sustainable Homes Testbed 
Federico Casalegno (PI), MIT Mobile Experience Lab 



(Sub)Urban Scale Sustainability 

•  Heterogeneous 
connected homes with 
different energy 
sources. 

•  Symmetric energy 
exchange between 
houses. 

•  Challenge:  
–  How to distribute 

energy optimally,  
–  while limiting the risk of 

an energy shortage, 
–  without centralized 

control. 

Bottom-Up Grid Project,  
MIT-EI-Tata. 



Vehicle Electrification and Autonomy 

•  Barrier to adoption due to range anxiety. 

Tesla Image. 
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Image	  courtesy	  of	  Boeing	  Research	  &	  Technology	  
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Vehicle Electrification and Autonomy 



Environmental Observing Systems 
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Environmental Observing Systems 

•  Barriers to high science return include operational 
cost and mission risk. 
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Joint collaboration with  
Woodshole Deep Submergence Lab and  
The Monterrey Bay Aquarium Research Institute 



Facilitating Sustainability 
Requires Managing Risk 
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Risk-bounded Planning 
(Goal-directed Model-Predictive Control) 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

Convex,	  single	  agent	  

Fixed	  schedule	  

Non-‐convex,	  single	  agent	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

Non-‐convex,	  flexible	  schedule,	  single	  agent	  

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 t = 3 

t = 5 

Convex,	  mulE-‐agent	  

Fixed	  schedule	  



Stochastic Optimization Problems 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

Convex	  chance-‐constrained	  opt.	  

Fixed	  schedule	  

Non-‐convex,	  chance-‐constrained	  opt	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

Chance-‐constrained	  planning	  &	  scheduling	  

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 t = 3 

t = 5 

Decentralized	  chance-‐constrained	  opt	  

Fixed	  schedule	  



Risk Allocation Algorithms 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

IRA	  (IteraEve	  Risk	  AllocaEon)	  

Fixed	  schedule	  

IRA	  (Non-‐convex	  Risk	  AllocaEon)	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

p-‐Sulu	  (probabilisEc	  Sulu)	  

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 t = 3 

t = 5 

MIRA	  (Market-‐based	  IRA)	  

Fixed	  schedule	  



Outline 

•  Goal-directed, Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation  
•  Appendix: Multi-agent Risk Allocation 
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Model-Predictive Control 

•  Plan control trajectory = 
constraint optimization  

Start 

Goal 

Pp
ts

pJ
p

∈

..

)(min

p: path 
P: Set of feasible paths 
J: cost function 
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Finite Horizon Model-Predictive Control 
•  Formulate as Linear (LP), Mixed Integer (MILP) or Mixed-Logic (MLLP) Program. 
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Example Constraints 

•  2-D Omni-dimensional Holonomic Vehicle in a room 
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Dynamics 

Discrete-time dynamics* 
(zero-order hold assumption) 
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xt+1  =          Axt          +       But              

Start 

Goal 

Initial velocity 

*How to obtain discrete-time dynamics from 
continuous-time dynamics? 
• Take a look at control theory text books (chapter on 
discrete-time system) 
• Use MATLAB c2d command  

(Thrust limits) 
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Example Constraints 

•  2-D Omni-dimensional Holonomic Vehicle in a room 
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Spatial constraints:  
Vehicle must be in the room 
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Example Cost Function 

•  What cost function should we use? 
–  Example: minimum control effort 

–  Problem: This is not a linear function!!  
–  There are tricks. 
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Formulation of Receding Horizon Control 

)1,1,0(   

),1,0(   
)1,1,0(   

..

),(min

maxmax

goal

start0

1

, ::

−=≤≤−

=

=

=≤

−=+=+

Nk

Nk
Nk

ts

J

k

N

kkk

NN
NN









uuu
xx
xx
gHx

BuAxx

uuxx

k

11ux 11
Cost function 

Dynamics 

Spatial constraints 

Initial position and velocity 

Goal position and velocity 

Thrust limits 

( ) ( )Tkykxk
T

kkkkk FFyxyx ,,   , ≡≡ ux 

)( Nf x+
Cost-to-go function 

It is not a good idea to fix N (time horizon) 



23 

Receding Horizon Control 

•  Patchwork. 

Start 

Goal 

First N steps 
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Receding Horizon Control 

•  Patchwork. 

Start 

Goal 

First N steps 

Next N steps 
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More on Receding Horizon 

•  10 seconds later….  

Start 

Goal 

Current position (t = 10) 

Plan  

Predicted position at t = 20 

t = 10 
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More on Receding Horizon 

•  World uncertain. 

Start 

Goal 

Actual path 

t = 20 

Predicted position at t = 20 

Plan  

Actual position at t = 20 
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Execution Horizon < Planning Horizon 

•  3 seconds later…. 

Start 

Goal 

Current position (t = 10) 

Plan  

Predicted position at t = 20 

t = 10 
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Execution Horizon < Planning Horizon 

•  3 seconds later….  

•  Position a little bit off 
from the plan. 

Start 

Goal 

Current position (t = 13) 

Plan  

Predicted position at t = 20 

t = 13 
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Execution Horizon < Planning Horizon 

•  Abandon the plan after 
t = 13. 

Start 

Goal 

Current position (t = 13) 

t = 13 
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Execution Horizon < Planning Horizon 

•  Abandon the plan after 
t = 13. 

•  Replan for another 
planning horizon. 

•  Repeat. 

Start 

Goal 

Current position (t = 13) 

Predicted position at t = 23 

t = 16 



Test bed: Connected Sustainable Home 
F. Casalegno & B. Mitchell, MIT Mobile Experience Lab 

•  Goal: Optimally control HVAC, window opacity, washer and dryer, e-car. 
•  Objective: Minimize energy cost. 

31 



Goal-directed Model-Predictive Control:  
Resident Goals 

32 

“Maintain room temperature after waking up until I go to 
work. No temperature constraints while I’m at work, but 

when I get home, maintain room temperature until I go to 
sleep. Maintain a comfortable sleeping temperature while I 

sleep. Cook dinner within at least an hour of arriving 
home, and at least 3 hours before bed. Also, dry my clothes 
before morning. I need to use my car to drive to and from 

work, so make sure it is fully charged by morning. It’s 
acceptable if my clothes aren’t ready by morning or if the 
house is a couple degrees too cold, but my car absolutely 

needs to be ready to use before I leave for work.” 



Goal-directed Model-Predictive Control:  
Resident Goals 

33 

“Maintain room temperature after waking up until I go to 
work. No temperature constraints while I’m at work, but 

when I get home, maintain room temperature until I go to 
sleep. Maintain a comfortable sleeping temperature while I 

sleep. Also, dry my clothes before morning. I need to use 
my car to drive to and from work, so make sure it is fully 
charged by morning. It’s acceptable if my clothes aren’t 
ready by morning or if the house is a couple degrees too 

cold, but my car absolutely needs to be ready to use before 
I leave for work.” 



Goal-directed Model-Predictive Control:  
Resident Goals 

34 

“Maintain room temperature after waking up until I go to 
work. No temperature constraints while I’m at work, but 

when I get home, maintain room temperature until I go to 
sleep. Maintain a comfortable sleeping temperature while I 

sleep. Also, dry my clothes before morning. I need to use 
my car to drive to and from work, so make sure it is fully 
charged by morning. It’s acceptable if my clothes aren’t 
ready by morning or if the house is a couple degrees too 

cold, but my car absolutely needs to be ready to use before 
I leave for work.” 



“Maintain room temperature after waking up until I go to 
work. No temperature constraints while I’m at work, but 

when I get home, maintain room temperature until I go to 
sleep. Maintain a comfortable sleeping temperature while I 

sleep. Also, dry my clothes before morning. I need to use 
my car to drive to and from work, so make sure it is fully 
charged by morning. It’s acceptable if my clothes aren’t 
ready by morning or if the house is a couple degrees too 

cold, but my car absolutely needs to be ready to use before 
I leave for work.” 

Goal-directed Model-Predictive Control:  
Resident Goals 
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Goal-directed Model-Predictive Control:  
Resident Goals 
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“Maintain room temperature after waking up until I go to 
work. No temperature constraints while I’m at work, but 

when I get home, maintain room temperature until I go to 
sleep. Maintain a comfortable sleeping temperature while I 

sleep. Also, dry my clothes before morning. I need to use 
my car to drive to and from work, so make sure it is fully 
charged by morning. It’s acceptable if my clothes aren’t 
ready by morning or if the house is a couple degrees too 

cold, but my car absolutely needs to be ready to use before 
I leave for work.” 



Flexibility Available to Control 

•  When activities are performed. 

•  When to charge/discharge batteries. 

•  Which activities to shed (when supply is low). 
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Encoding: Qualitative State Plan (QSP) 

38 

Maintain 
room 

temperature 

Wake 
up 

Wake 
up 

Maintain room 
temperature Go to 

work 
Home 
from 
work 

Go to 
sleep 

Maintain comfortable 
sleeping temperature 

[24 hours] 

“Maintain room temperature after 
waking up until I go to work. No 

temperature constraints while I’m at 
work, but when I get home, maintain 
room temperature until I go to sleep. 

Maintain a comfortable sleeping 
temperature while I sleep.” 

[1-3 hour] [6-8 hours] [7-8 hours] [7-9 hours] 

Sulu [Leaute & Williams, AAAI05] 



Encoding: Qualitative State Plan (QSP) 
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Maintain 
room 

temperature 

Wake 
up 

Wake 
up 

Maintain room 
temperature Go to 

work 
Home 
from 
work 

Go to 
sleep 

Maintain comfortable 
sleeping temperature 

[24 hours] 

“Maintain room temperature after 
waking up until I go to work. No 

temperature constraints while I’m at 
work, but when I get home, maintain 
room temperature until I go to sleep. 

Maintain a comfortable sleeping 
temperature while I sleep.” 

…
…

[1-3 hour] [6-8 hours] [7-8 hours] [7-9 hours] 

Sulu [Leaute & Williams, AAAI05] 
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Encode the Qualitative State Plan and Dynamics 
within a Model-Predictive Controller 
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Sulu [Leaute & Williams, AAAI05] 
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Maintain 
room 

temperature 

Wake 
up 

Wake 
up 

Maintain room 
temperature Go to 

work 
Home 
from 
work 

Go to 
sleep 

Maintain comfortable 
sleeping temperature 

[24 hours] 

(p)Sulu Results 



Energy Savings: Optimal Control 

•  42.8% savings in winter over PID. 
•  15.3%, 16.8%, and 4.4% in  

spring, summer, autumn. 



Additional Savings Due to Flexibility 

•  10.4%, 1.6%, 1.6%, and 0.7% in the  
winter, spring, summer, and autumn. 
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Outline 

•  Goal-directed, Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation  
•  Appendix: Multi-agent Risk Allocation 



The Danger of Ignoring Uncertainty 
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Depth Navigation for Bathymetric Mapping – Jan. 23rd, 2008 

Problem: Managing Risk within Mission-Guidelines 



>$1M 
 



Issue:	  Frequent	  Mission	  Aborts	  

	  

Minimum Altitude 

Planned trajectory 

Actual trajectory 

Attitude is less than the minimum 
altitude 

Mission abort 
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Robust Model Predictive Control 

•  Receding horizon planners react to uncertainty  
after something goes wrong. 

•  Can’t we take precautionary actions  
before something goes wrong? 

• Ali A. Jalali and Vahid Nadimi, “A Survey on Robust Model Predictive 
Control from 1999-2006.” 
 



Robust	  versus	  Chance	  Constrained	  
R
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80%	   x	

y	

Assumes a probability 
distribution that 
characterizes uncertainty.	

No Fly Zone	

No Fly Zone	

•  Predicted position has bounded uncertainty. 
•  Problem: Find a control sequence that satisfies the 

constraints for all realizations of uncertainty. 	

t =1 t =2 

99.9% 
99% 

90% 
80% 

99.9% 
99% 

90% 
80% 

t =1 t =2 
•  Predicted position has probabilistic uncertainty. 
•  Problem: Find a control sequence that satisfies 

the constraints within a probability bound 
(Chance Constraint).	
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Incorporating Uncertainty 

•  Deterministic discrete-time  
LTI model 

•  Additive uncertainty 

•  Multiplicative uncertainty 

ttt BuAxx +=+1

ttt BuxAAx +Δ+=+ )(1

tttt wBuAxx ++=+1
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wt ∈W

x 
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p(x,y) 

p(wt ) = N(ŵt,P0 )
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What to Minimize? (Bounded Uncertainty) 

•  Minimize the worst case cost 

•  Minimize nominal cost 

yuncertaint Bounded :
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What to Minimize? (Stochastic Uncertainty) 

•  Utilitarian approach 

•  Chance constrained optimization 

)()(min UU,X
U

pfJ +

Probability of failure Penalty (constant) 

Δ≤)(   ..

)(min

U

U,X
U

fts

J

Probability of failure Risk bound 
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Chanced Constrained,  
Robust Path Planning 

–  “Plan optimal path to goal such that p(failure) ≤ Δ.” 

p(failure) ≤ Δ 

Expected path 
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Risk – Performance Tradeoff 

•  Desired probability of failure used to  
trade performance against risk-aversion. 

Method: Uniform Risk Allocation	

[Blackmore, PhD]	
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RMPC with Chance Constraints 

•  MPC 
)(min UX,
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J

tttTt
BuAxx +=∀ +

−≤≤
110

s.t. 

i
tt

iT
t

N

i

T

t
gxh ≤∧∧

== 00
Constraints 

Dynamics 
(Discrete time) 



57 

RMPC with Chance Constraints 
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RMPC with Chance Constraints 
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SoluHon	  Methods	  for	  
Chance-‐Constrained	  Problems	

•  Sampling	  based	  methods	  
– Scenario-‐based	  

•  Bernardini	  and	  Bemporad,	  2009	  

– ParHcle	  control	  
•  Blackmore	  et	  al.,	  2010	  

•  Non-‐sampling-‐based	  methods	  
– EllipHc	  approximaHon	  	  
(direct	  extension	  of	  robust	  predicHve	  control)	  

•  van	  Hessem,	  2004	  

–  	  Risk	  allocaHon	  
•  Ono	  and	  Williams,	  2008	  

61	  



SoluHon	  Methods	  for	  
Chance-‐Constrained	  Problems	

•  Sampling	  based	  methods	  
– Scenario-‐based	  (see	  Warren	  Powell’s	  tutorial).	  

•  Bernardini	  and	  Bemporad,	  2009	  

– ParHcle	  control	  
•  Blackmore	  et	  al.,	  2010	  

•  Non-‐sampling-‐based	  methods	  
– EllipHc	  approximaHon	  	  
(direct	  extension	  of	  robust	  predicHve	  control)	  

•  van	  Hessem,	  2004	  

–  	  Risk	  allocaHon	  
•  Ono	  and	  Williams,	  2008	  
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ParHcle	  Control	  
1.  Use	  parHcles	  to	  sample	  random	  variables.	  

Obstacle 
1 

Obstacle 
2 

Goal Region 

Initial state 
distribution. 

Particles 
approximating initial 
state distribution. 

)(~)( t
i
t p νν)(~ 0,
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i
c p xx Ni …1= Ft …0=
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ParHcle	  Control	  
2.  Calculate	  future	  state	  trajectory	  for	  each	  parHcle,	  leaving	  

explicit,	  dependence	  on	  control	  inputs	  u0:T-1. 
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1 

Obstacle 
2 

Goal Region 
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ParHcle	  Control	  
2.  Calculate	  future	  state	  trajectory	  for	  each	  parHcle,	  leaving	  

explicit,	  dependence	  on	  control	  inputs	  u0:T-1. 

Obstacle 
1 

Obstacle 
2 

Goal Region 
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for u = uB 
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ParHcle	  Control	  
3.  Express	  chanc-‐constraints	  of	  opHmizaHon	  problem	  

approximately	  in	  terms	  of	  parHcles.	  

Probability of failure 
 approximated by the  
fraction of failing  
particles. 
. 

Sample mean 
approximates 
state mean. 

True expectation  
approximated by 
sample mean of cost 
function: Obstacle 

1 

Obstacle 
2 

Goal Region 

t=0 
t=1 

t=2 

t=3 

t=4 

E h(u0:F−1,x1:F )[ ]

≈
1
N

h(u0:F−1,x1:F
(i) )

i=1

N

∑
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ParHcle	  Control	  
4.  Solve	  approximate	  determinisEc	  opHmizaHon	  problem	  

for	  u0:F-1. 

Obstacle 
1 

Obstacle 
2 

Goal Region 

t=0 

t=1 

t=2 

t=3 

t=4 
10% of particles 
fail in optimal 
solution. 

δ = 0.1 
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Convergence	  

–  As	  Nà∞,	  approximaHon	  becomes	  exact.	  

Obstacle 
1 

Obstacle 
2 

Goal Region 
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Convergence	  

–  As	  Nà∞,	  approximaHon	  becomes	  exact.	  

Obstacle 
1 

Obstacle 
2 

Goal Region 
10% probability of 
failure. 



70 

MBARI	  AUV	  Science	  Mission	  

Remain in [safe region] 

Remain in 
[bloom region] 

e1 e5 
Remain in 

[mapping region] e2 e3 e4 End in 
[pickup region] 

[50,70] [40,50] 

[0,300] 

T(e1)=0 

T(e2)=70 

T(e3)=110 T(e4)=150 
T(e5)=230 



SoluHon	  Methods	  for	  
Chance-‐Constrained	  Problems	

•  Sampling	  based	  methods	  
– Scenario-‐based	  

•  Bernardini	  and	  Bemporad,	  2009	  

– ParHcle	  control	  
•  Blackmore	  et	  al.,	  2010	  

•  Non-‐sampling-‐based	  methods	  
– EllipEc	  approximaEon	  	  
(direct	  extension	  of	  robust	  predicEve	  control)	  

•  van	  Hessem,	  2004	  

–  	  Risk	  allocaHon	  
•  Ono	  and	  Williams,	  2008	  
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EllipHc	  ApproximaHon	

72	  

No Fly Zone	Chance	  constraint:	  	  

Risk	  <	  1%	  



EllipHc	  ApproximaHon	

73	  

No Fly Zone	

1.  Specify	  the	  probability	  distribuHon	  of	  the	  future	  states	  
as	  a	  funcHon	  of	  control	  inputs.	  

Chance	  constraint:	  	  

Risk	  <	  1%	  

Note:	  When	  planning	  in	  an	  N-‐dimensional	  state	  space	  over	  	  Hme	  steps,	  	  
a	  joint	  distribuHon	  over	  an	  N-‐dimensional	  space	  must	  be	  considered.	

99.9% 
99% 

90% 
80% 



EllipHc	  ApproximaHon	
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No Fly Zone	

1.  Specify	  the	  probability	  distribuHon	  of	  the	  future	  states	  
as	  a	  funcHon	  of	  control	  inputs.	  

2.  Find	  a	  99%	  probability	  ellipse.	  

Chance	  constraint:	  	  

Risk	  <	  1%	  

99.9% 
99% 

90% 
80% 



EllipHc	  ApproximaHon	
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No Fly Zone	Chance	  constraint:	  	  

Risk	  <	  1%	  

1.  Specify	  the	  probability	  distribuHon	  of	  the	  future	  states	  
as	  a	  funcHon	  of	  control	  inputs.	  

2.  Find	  a	  99%	  probability	  ellipse.	  
3.  Find	  a	  control	  sequence	  that	  makes	  sure	  that	  the	  

probability	  ellipse	  is	  within	  the	  constraint	  boundaries.	

99.9% 
99% 

90% 
80% 



ConservaHsm	  of	  EllipHc	  ApproximaHon	

76	  

No Fly Zone	 99.9% 
99% 
90% 

80% 
Issue:	  oYen	  very	  
conservaEve	

Real	  probability	  	  
of	  failure	

Probability	  density	  funcEon	



ConservaHsm	  of	  EllipHc	  ApproximaHon	
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No Fly Zone	 99.9% 
99% 
90% 

80% 
Issue:	  oYen	  very	  
conservaEve.	

ConservaEsm	



SoluHon	  Methods	  for	  
Chance-‐Constrained	  Problems	

•  Sampling	  based	  methods	  
– Scenario-‐based	  

•  Bernardini	  and	  Bemporad,	  2009	  

– ParHcle	  control	  
•  Blackmore	  et	  al.,	  2010	  

•  Non-‐sampling-‐based	  methods	  
– EllipHc	  approximaHon	  	  
(direct	  extension	  of	  robust	  predicHve	  control)	  

•  van	  Hessem,	  2004	  

–  	  Risk	  allocaEon	  
•  Ono	  and	  Williams,	  2008	  
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Risk-‐AllocaHon	  Approach:	  Overview	

79	  

Idea	  1:	  We	  easily	  solve	  a	  chance	  constrained	  problem	  with	  one	  
linear	  constraint	  C	  and	  one	  normally	  distributed	  random	  variable	  x,	  	  
by	  reformulaHng	  C	  to	  a	  determinisHc	  constraint	  C’.	

<	  1%	

C(x) 
Chance	  constraint:	  	  

Risk	  <	  1%	  
x̂ Δ

C '(x̂) ≈ C(x̂)−Δ



Risk-‐AllocaHon	  Approach:	  Overview	

80	  

Idea	  2:	  Generalize	  to	  a	  single	  constraint	  over	  an	  	  
N-‐dimensional	  random	  variable,	  
by	  projecHng	  its	  distribuHon	  onto	  the	  axis	  	  
perpendicular	  to	  the	  constraint	  boundary.	  

99.9% 
99% 

90% 
80% 

Chance	  constraint:	  	  

Risk	  <	  1%	  



Risk-‐AllocaHon	  Approach:	  Overview	

81	  

99.9% 
99% 

90% 
80% 

Chance	  constraint:	  	  

Risk	  <	  1%	  

Idea	  3:	  Generalize	  to	  a	  joint	  chance-‐constraint	  	  
over	  mulHple	  constraints	  C1,	  C2,	  by	  distribuHng	  risk.	  



Risk-‐AllocaHon	  Approach:	  Overview	

82	  

99.9% 
99% 

90% 
80% 

Chance	  constraint:	  	  

Risk	  <	  1%	  

Find	  a	  soluHon	  such	  that:	  
1.  Each	  constraint	  Ci	  takes	  less	  than	  δi	  risk.	  
2.  	  Σi	  δi	  ≤	  1%	  

	  Note:	  this	  bound	  is	  derived	  from	  Boole’s	  inequality.	  



Risk-‐AllocaHon	  Approach:	  Overview	

83	  

99.9% 
99% 

90% 
80% 

Chance	  constraint:	  	  

Risk	  <	  1%	  

Using	  Boole’s	  inequality,	  	

Real	  probability	  	  
of	  failure.	



Risk-‐AllocaHon	  Approach:	  ConservaHsm	

99.9% 
99% 

90% 
80% 

Chance	  constraint:	  	  

Risk	  <	  1%	  

ConservaHsm	

Significantly	  less	  conservaHve	  than	  the	  ellipHc	  approximaHon,	  	  
especially	  in	  a	  high-‐dimensional	  problem.	



Managing Vehicles using Risk Allocation 

85 
Yu 

Ono & Williams, JAIR13 
Yu & Williams, IJCAI13 



Outline	  

•  Goal-‐directed,	  Model-‐PredicHve	  Control	  
•  StochasHc	  OpHmizaHon	  
•  IteraHve	  Risk	  AllocaHon	  
•  OpHmal	  Risk	  AllocaHon	  	  
•  Appendix:	  MulH-‐agent	  Risk	  AllocaHon	  
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Example: Race Car Path Planning 
•  A race car driver wants 

to go from the start to 
the goal as fast as 
possible. 

•  Actual path may differ 
from the planned path 
due to uncertainty. 

•  Crashing into the wall 
may kill the driver. 

•  Driver wants a 
probabilistic guarantee: 
   P(crash) < 0.1% 

–  Chance constraint. 
 

Start 

Goal 
Walls 

Planned Path 

Actual Path 
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Idea: Plan Nominal Path 
using Safety Margin 

Start 

Goal 
Walls 

Planned Path 

Actual Path 
Safety Margin 

Safety M
argin 

Problem 
 

Find the fastest path to the 
goal, while limiting the 
probability of crash 
throughout the race to 0.1% 

Risk bound 

Approach:  
1.  Set safety margin that 

guarantees that the risk  
bound is satisfied. 

2.  Plan optimal nominal path 
within safety margin. 

 

Simple Method:  
Uniform risk allocation.  
 

 



Not All Safety Margins are Equal 

Start Start 

Goal 

Safety margin 

Walls 

Goal 
Walls 

Safety margin 

   Uniform width Non-uniform width 

Shorter path 
89 

Longer path 



Idea: Design the Optimal Safety Margin  
by Allocating Risk 

Corner 
Narrow safety margin 
= higher risk 

Straightaway 
Wide safety margin 
= lower risk 

•  Added risk at the corner 
shortens the path more 
than the same amount of  
risk at the straightaway. 
–  Sensitivity of path length 

to changes in risk is 
higher near the corner. 

Risk Allocation: 
–  Find an allocation of risk to 

constraints that results in 
the best feasible solution. 

90 
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Iterative Risk Allocation (IRA) Algorithm 

Iteration 

• Descent algorithm 

•  Starts from a suboptimal risk allocation. 
•  Improves allocation at each iteration. 
•  But does not guarantee convergence. 

)()()( 2
*

1
*

0
* δδδ JJJ ≥≥
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 

No gap = Constraint is active. 

Gap = constraint is inactive. 

Best path for  
safety margin. 
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 

No gap = Constraint is active. 

Gap = constraint is inactive. 
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 

No gap = Constraint is active. 

Gap = constraint is inactive. 
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 
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Iterative Risk Allocation Algorithm 

Algorithm IRA 
 
1  Initialize with arbitrary risk 

allocation. 
2  Loop 
3   Compute the best 

 available path given the 
 current risk allocation. 

4   Decrease the risk where 
 the constraint is inactive. 

5   Increase the risk where 
 the constraint is active. 

6  End loop 
 
 

Start 

Goal 

Safety margin 
What Remains:  
•  Mathematical formulation: 

•  Reformulating stochastic  
to deterministic constraints. 



Comparison 
•  Approaches 

–  Elliptic Approximation: uses very conservative approximation of 
joint chance constraint. 

–  Sampling: approximates probability distribution by samples. 

•  Risk allocation results in near-optimal solution with 
significantly less computation time than sampling.   
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Test bed: Connected Sustainable Home 
F. Casalegno & B. Mitchell, MIT Mobile Experience Lab 

•  Goal: Optimally control HVAC, window opacity, washer/dryer, e-car. 
•  Objective: Minimize energy cost. 
•  Uncertainty: Solar input, outside temp, energy supply, occupancy. 
•  Risk: Resident goals not satisfied; occupant uncomfortable. 

99 



MPC for Dynamic Window 

Solar heat input 

Outside temperature 

R
oo

m
 T

em
pe

ra
tu

re
 

Optimal temperature 

C
om

fo
rt

ab
le

 ra
ng

e Heat the room using sunlight… 

…so that the temperature will stay within the 
comfortable range WITHOUT using heaters in the night 

6am 12pm 6pm 

IRA-R 
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Successive Risk Allocations for IRA-RMPC 

Takes risk of violating resident constraints where 
largest energy savings are possible. 

Home% Home%
Asleep%

Home% Home%

18°C 

12 pm 5 pm 12 pm 0 am 

22°C 

20°C 

25°C 

30°C 

5°C 
12 pm 5 pm 12 pm 0 am 8 am 8 am 

(a) First Iteration (b) Second Iteration 

Active' Active'

Inactive'

: Optimal plan at current iteration 
: Optimal plan at previous iteration 

: Safety margin 

Asleep% Away% Away%



Successive Risk Allocations for IRA-RMPC 

Given chance-constrained Qualitative State Plan (CC-QSP): 
1.  (Re-)allocates risk. 
2.  Reformulates to deterministic QSP and calls Sulu. 
3.  Repeats. 

Home% Home%
Asleep%

Home% Home%

18°C 

12 pm 5 pm 12 pm 0 am 

22°C 

20°C 

25°C 

30°C 

5°C 
12 pm 5 pm 12 pm 0 am 8 am 8 am 

(a) First Iteration (b) Second Iteration 

Active' Active'

Inactive'

: Optimal plan at current iteration 
: Optimal plan at previous iteration 

: Safety margin 

Asleep% Away% Away%



Results 
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Improvement in Comfort 

•  Deterministic control (Sulu): 30% comfort violations. 
•  Robust control (p-Sulu): near 0% violations. 



Outline 

•  Goal-directed, Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation  

–  Stochastic Linear Programs 
–  Disjunctive Linear Programs 
–  Probabilistic Sulu 

•  Appendix: Multi-agent Risk Allocation 



Finding Optimal Risk Allocations 

Given that the Boole’s inequality approximation 
has been performed. 
 
Idea: 
1.  Formulate optimal risk allocation as a 

stochastic program. 
2.  Map to deterministic (non-)convex program, 

with risk and control variables as decision 
variables. 

3.  Solve exactly using deterministic solver. 



Problems 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

Convex,	  single	  agent	  

Fixed	  schedule	  

Non-‐convex,	  single	  agent	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

Non-‐convex,	  flexible	  schedule,	  single	  agent	  

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 t = 3 

t = 5 

Convex,	  mulE-‐agent	  

Fixed	  schedule	  



108 

),0(~ tt Nw Σ

Δ−≥⎥⎦
⎤

⎢⎣
⎡ ≤∧∧

==
1Pr

11

i
tt

iT
t

N

i

T

t
gxh

Chance-Constrained FH Optimal Control 

),(~ 0,00 xxNx Σ
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Stochastic dynamics 
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Conversion of Joint Chance Constraint 

Δ−≥⎥⎦
⎤

⎢⎣
⎡ ≤∧∧

==
1Pr

00

i
tt

iT
t

N

i

T

t
gxhJoint chance 

constraint 
Intractable 
- Requires computation of complex integral over multivariate Gaussian.  

1 

A set of individual chance constraints. 
-  Each involves one hard constraint,  

over a univariate Gaussian distribution. 

2 

A set of deterministic state constraints. 
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Decomposition of Joint Chance Constraint 
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(Inverse of cdf of Gaussian) 

[Charnes et. al. 1959] 

Conversion to Deterministic Constraint 2 
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t mgxh δ−≤⇔Deterministic constraint  

Safety Margin 

[ ] i
t

i
tt

iT
t gxh δ−≥≤ 1PrChance constraint 

[Charnes et. al. 1959] 

t = 1 

t = 2 

t = 3 
t = 4 t = 5 

Safety Margin 

Mean state Nominal path 

( )11 δm

( )22 δm

Conversion to Deterministic Constraint 2 



)(min :1
:1

T
u

uJ
T

T U∈

118 

),0(~ tt Nw Σ
),(~ 0,00 xxNx Σ

[ ]
Δ≤

−≥≤∧∧

∑
==

it

i
t

i
t

i
tt

iT
t

I

i

T

t
gxh

,

11
1Pr

δ

δIndividual chance 
constraints 

δ
min

s.t. 

tttt

T

t
wBuAxx ++=∧ +

−

=
1

1

0

Conversion to Deterministic Constraint 2 



)(min :1
:1

T
u

uJ
T

T U∈

119 

( )
Δ≤

−≤∧∧

∑
==

it

i
t

i
t

i
t

i
tt

iT
t

I

i

T

t
mgxh

,

11

δ

δ

δ
min

s.t. 

ttt

T

t
BuxAx +=∧ +

−

=
1

1

0

Conversion to Deterministic Constraint 2 



)(min :1
:1

T
u

uJ
T

T U∈

120 

( )
Δ≤

−≤∧∧

∑
==

it

i
t

i
t

i
t

i
tt

iT
t

I

i

T

t
mgxh

,

11

δ

δ

δ
min

s.t. 

ttt

T

t
BuxAx +=∧ +

−

=
1

1

0

Conversion to Deterministic Constraint 2 

Convex if δ < 0.5  

1.0 0.5 0 
i
tδ

m Convex Convex optimization 



Outline 
•  Goal-directed, Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation  

–  Stochastic Linear Programs 
–  Disjunctive Linear Programs 
–  Probabilistic Sulu 

•  Multi-agent Risk Allocation 



Problems 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

Convex,	  single	  agent	  

Fixed	  schedule	  

Non-‐convex,	  single	  agent	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

Non-‐convex,	  flexible	  schedule,	  single	  agent	  

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 t = 3 

t = 5 

Convex,	  mulE-‐agent	  

Fixed	  schedule	  



Non-Convex Problem Formulation 

Non-convex state constraint 

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  



Problem Formulation: Non-Convex Chance Constraint 
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Problem Formulation: Non-Convex Chance Constraint 
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Decomposition Through Risk Selection 
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Decomposition Through Risk Selection 
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Solution: Branch and Bound  
for a Convex Disjunctive Program 
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Stochastic DLP Branch and Bound 
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)()( 22211211 CCCC ∨∧∨

)( 222111 CCC ∨∧ )( 222112 CCC ∨∧

2111 CC ∧ 2211 CC ∧ 2112 CC ∧ 2212 CC ∧

Convex Optimization Problems 

 Repeat until no clauses left: 
1.   Select clause. 
2.  Split on disjuncts. 
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Stochastic DLP Branch and Bound 
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)( 222111 CCC ∨∧ )( 222112 CCC ∨∧

2111 CC ∧ 2211 CC ∧ 2112 CC ∧ 2212 CC ∧

Convex Optimization 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

Convex,	  single	  agent	  

Fixed	  schedule	   Repeat until no clauses left: 
1.   Select clause. 
2.  Split on disjuncts. 



Bound Through Convex Relaxation 
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)( 222111 CCC ∨∧ )( 222112 CCC ∨∧

2111 CC ∧ 2211 CC ∧ 2112 CC ∧ 2212 CC ∧

•  Bound: Remove all disjunctive clauses [Li & Williams 2005]. 

•  Issue: Computing bound is slow!! 
•  Cause: Sub-problems include non-linear constraints. 



Subproblems of BnB (non-linear) 
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Subproblems of BnB (non-linear) 
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Fixed Risk Relaxation: Intuition 

•  Results in an infeasible solution to the original problem. 
•  Gives lower bound for the cost of the original problem. 

134 

Start 

Goal 

Safety margin 
Start 

Goal 

FRR Safety margin 

FRR Original problem 
Sets safety margin for all 
constraints to max risk Δ. 



Approach: Fixed Risk Relaxation (FRR) 

135 

•  FRR: linear relaxation of each subproblem. 
–  Has only linear constraints (typically LP / QP). 
–  Gives lower bound on the cost of sub-problem. 
–  May generate infeasible solution to original problem. 



Fixed Risk Relaxation (Linear) 
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• All constraints are linear (FRR is typically LP or QP). 
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11C 12C

2111 CC ∧ 2211 CC ∧ 2112 CC ∧ 2212 CC ∧

Algorithm: BnB + FRRs 
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φ

11C 12C

2111 CC ∧ 2211 CC ∧

•  Solve FRRs of subproblems to reduce computation time. 
•  Solve subproblem without relaxation at unpruned leaf nodes to 

obtain exact solution. 
•  Significantly reduces computation time without compromising 

optimality. 

Prune if  
(FRR cost) > incumbent  

2111 CC ∧

Prune if  
(FRR cost) > incumbent  

Optimal 
solution 



Outline 
•  Goal-directed, Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation 

–  Stochastic Linear Programs 
–  Disjunctive Linear Programs 
–  Probabilistic Sulu 

•  Appendix: Multi-agent Risk Allocation 



Problems 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

Convex,	  single	  agent	  

Fixed	  schedule	  

Non-‐convex,	  single	  agent	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

Non-‐convex,	  flexible	  schedule,	  single	  agent	  

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 t = 3 

t = 5 

Convex,	  mulE-‐agent	  

Fixed	  schedule	  



Problem Formulation 

Flexible 
schedule 

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

Non-convex, flexible schedule 



Two-layer Approach 
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Outer-loop: Schedule optimization 
function p-Sulu(ccqsp) 
  incumbent ← INF; 
  for  s 
    (J*, U*) ← innerLoop(s,ccqsp); 
    if J* < incumbent     
      incumbent ← J*; 
      solution ← (s,U*)  
    endif 
     endfor 
  return solution; 

Inner-loop: fixed schedule CC-QSP as a Stochastic-DLP 
function innerLoop(s,ccqsp) 
  Solve chance-constrained optimal control with s and ccqsp; 
  U* ← Optimal control sequence; 
  J* ← Optimal objective value; 
  return (J*, U*); NIRA Algorithm 



Results 1: Personal Transport Scenario 
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[0.8 4.5] 
Start in 
[KPVC] 

Remain in 
[safe region] 

[1.8 10.2] 

[0 15] 

Remain in 
[Scenic region] 

End in 
[KBED] 

[4.5 7.5] 

e0 
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Chance constraints: 
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0.001	  

0.002	  

0.003	  

0.004	  

0.005	  

0.006	  

1	   2	   3	   4	   5	   6	   7	   8	   9	  10	  11	  12	  13	  14	  15	  16	  
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Time step 

R
is

k 
al

lo
ca

tio
n 

0.5% 0.25% 

0.25% 

0.029% 

0.029% 

0.029% 

0.012% 

Computation time: 7.06 sec 



[2.8 6.1] 

[0 ∞] 

Results 2: 2 Obstacles, 3 Goals 
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[0 ∞] 
Start in 
[Start] 

Remain in 
[safe region] 

[4.3 11.1] 

[0 15] 

Go through 
[Wypt1] 

End in 
[KBED] 

e0 
 

e1 
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Chance constraints: 
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Computation time: 8544 sec (2hr 23 min) 

Go through 
[Wypt2] 

e3 
 eE 

 

[4.5  8.3] 

4.1% 

0.03% 0.03% 

0.03% 
3.9% 

2.0% 



Performance Improvement 
Using Boosting Tree-based Regression 

Scenario # 1 2 3 4 
NIRA 135.21 219.76 79.99 80.15 
NIRA w/ Boost-LP 3.84 4.15 3.03 2.93 

144 

• Both algorithms always result in the same solution  

NIRA 
NIRA w/ Boost-LP 

T=20, Δ=0.01 
Scenaros: 
#1:  2 obstacles and no waypoint 
#2:  2 obstacles and 2 waypoints 
#3:  1 obstacle and 1 waypoint, 

 trained with different disturbance 
level  

#4:  1 obstacle with 1 waypoint, 
 trained with different control 
constraints 

* Banerjee, A. G., & Roy, N. (2010). Learning 
Solutions of Similar Linear Programming 
Problems using Boosting Trees. CSAIL 
technical report MIT-CSAIL-TR-2010-045 



P-Sulu Performing  
Rendezvous and Docking on Spheres 

145 



Problems 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

Convex,	  single	  agent	  

Fixed	  schedule	  

Non-‐convex,	  single	  agent	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

Non-‐convex,	  flexible	  schedule,	  single	  agent	  

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 t = 3 

t = 5 

Convex,	  mulE-‐agent	  

Fixed	  schedule	  



Facilitating Sustainability 
Requires Managing Risk 

147 
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Risk Allocation 

Iteration 

1.  IRA: reallocates risk manually. 
2.  CRA,NRA: standard solver reallocates risk. 

)()()( 2
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1
*

0
* δδδ JJJ ≥≥



Risk-bounded Planning 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

Convex,	  single	  agent	  

Fixed	  schedule	  

Non-‐convex,	  single	  agent	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

Non-‐convex,	  flexible	  schedule,	  single	  agent	  

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 t = 3 

t = 5 

Convex,	  mulE-‐agent	  

Fixed	  schedule	  



Optimization Problems 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

Convex	  chance-‐constrained	  opt.	  

Fixed	  schedule	  

Non-‐convex,	  chance-‐constrained	  opt	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

Chance-‐constrained	  planning	  &	  scheduling	  

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 t = 3 

t = 5 

Decentralized	  chance-‐constrained	  opt	  

Fixed	  schedule	  



Risk Allocation Algorithms 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

IRA	  (IteraEve	  Risk	  AllocaEon)	  

Fixed	  schedule	  

IRA	  (Non-‐convex	  Risk	  AllocaEon)	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

p-‐Sulu	  (probabilisEc	  Sulu)	  

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 t = 3 

t = 5 

MIRA	  (Market-‐based	  IRA)	  

Fixed	  schedule	  



Outline 

•  Model-Predictive Control 
•  Stochastic Optimization 
•  Iterative Risk Allocation 
•  Optimal Risk Allocation  
•  Appendix: Multi-agent Risk Allocation 



Algorithms 

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 

IRA	  (IteraEve	  Risk	  AllocaEon)	  

Fixed	  schedule	  

IRA	  (Non-‐convex	  Risk	  AllocaEon)	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

t = 1 

t = 5 

Fixed	  schedule	  

C	  

Waypoint	  

Goal	  

Start	  

Obstacle	  

[1	  3]	  

[2	  4]	  

[0	  5]	  

Simple	  temporal	  
constraints	  

p-‐Sulu	  (probabilisEc	  Sulu)	  

Waypoint	  

Goal	  

Start	  

t = 1 

t = 5 t = 3 

t = 5 

MIRA	  (Market-‐based	  IRA)	  

Fixed	  schedule	  



Problem Formulation for Multi-agent 
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i: Index of agents 
I agents, Ni state constraints for i’th agent 



Problem Formulation for Multi-agent 
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i: Index of agents 
I agents, Ni state constraints for i’th agent 

•  Minimize aggregate cost 
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Problem Formulation for Multi-agent 

Δ−≥⎥⎦

⎤
⎢⎣

⎡
≤∧∧

==

=∈
∑

1Pr     ..

)(min

11

1
:1:1

i
n

iiT
n

N

n

I

i

I

i

ii

U

gXhts

UJ

i

II U

Δ−≥⎥⎦
⎤

⎢⎣
⎡ ≤∧

=

∈

1Pr   ..

)(min

1

i
n

T
n

N

n

U

gXhts

UJ
U

Single agent 
 

Multi-agent  
 

•  Minimize aggregate cost 
•  Bound the probability that all agents satisfy all constraints 

–  System fails if one agent violates constraints. 
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i: Index of agents 
I agents, Ni state constraints for i’th agent 



Risk Allocation between Agents 
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Decomposed, deterministic form  
 

•  Need to optimize risk allocation 
between agents since sensitivity 
to risk is different 

+ 

System’s risk bound: 0.1% 

0.02% 0.08% 

Risk is distributed among agents 

157 

User 

specifies 

∑ Individual 
risk bounds ≤

System’s 
risk bound 



Approach: Decentralized Optimization 

•  Each agent is an 
independent decision maker 

•  Communicates with others 
•  Finds globally optimal 

solution through iterations 
•  Inspired by an economic 

process tâtonnement 
–  Risk = resource traded in a 

market 
–  Each agent has a demand for 

risk as a function of the price 
of risk   
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User supplies risk by 
specifying the risk bound 

Agents consume risk  

+ 

System’s risk bound: 0.1% 

0.02% 0.08% 

∑ Individual 
risk bounds ≤

System’s 
risk bound ∑ Demands 

for risk ≤ Supply  
of risk 



DR 

Market-based Solution to Distributed Risk Allocation 
(Dual Decomposition) 

Pr
ic

e 

Quantity 

Agent 2’s demand 
Agent 1’s demand 

Aggregate demand 
DW 

S 

0.1% 

p* 

D*W D*R 

Equilibrium price 

Risk allocated to Agent 2 Risk allocated to Agent 1 

System operator specifies the risk bound (supply) 

DW +DR 
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Iteratively set price  
using Tâtonnement. 



Market-based Iterative Risk Allocation Algorithm 
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Decentralized Optimization 

Dual Decomposition 
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Convex optimization 

Convex optimization 
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Root finding problem 

Dual variable 
= Price of risk 

Risk taken by  
the i’th agent 

= Demand for risk 
from i’th agent 
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Centralized Optimization 
(decomposed, deterministic form) 
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Solved by Brent’s method 



Properties of MIRA 

•  Existence of decentralized solution 
–  If the centralized optimization has an optimal solution, it is 

also an optimal solution for the decentralized optimization 

•  Optimality of decentralized solution 
–  If the decentralized optimization has an optimal solution, it 

is also an optimal solution for the centralized solution 

•  Convergence of MIRA 
–  MIRA is guaranteed to converge to an optimal solution if it 

exists  
      MIRA is guaranteed to converge to the same 
solution as the centralized approach 
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Proofs 

•  Existence 

•  Optimality 

•  Convergence 
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    The KKT conditions of 
decentralized optimization coincide 
with the KKT conditions of 
centralized optimization 



    Demand functions are 
continuous; Brent’s method is 
guaranteed to converge for 
continuous functions 





Sketch of Proof 
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Sketch of Proof 
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MIRA (each agent) 
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Centralized Optimization 
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MIRA (central module) 
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KKT comp. 
slackness 
condition: 

•  Special case with p=0 is handled separately 



Proofs 

•  Existence 

•  Optimality 

•  Convergence 
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    The KKT conditions of 
decentralized optimization coincide 
with the KKT conditions of 
centralized optimization 



    Demand functions are 
continuous; Brent’s method is 
guaranteed to converge for 
continuous functions 





Definition: Cost of Risk for i’th Agent 

            : minimum cost the agent can achieve 
when it is allowed to take up to     of risk in total 
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Each Agent’s Optimization Problem 

= 
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Sketch of Proof 

Starting from: convexity of             (assumption) 
1.               is monotonically decreasing, strictly convex 

–  strict convexity of          (inverse of cdf of Gaussian) 

2. Di(p) is continuous 
–  Conjugate Subgradient Theorem (Bertsekas 2009) 
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Convergence to Optimal Solution 
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Result: Scalability 

Values are the averages of 100 runs each 
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