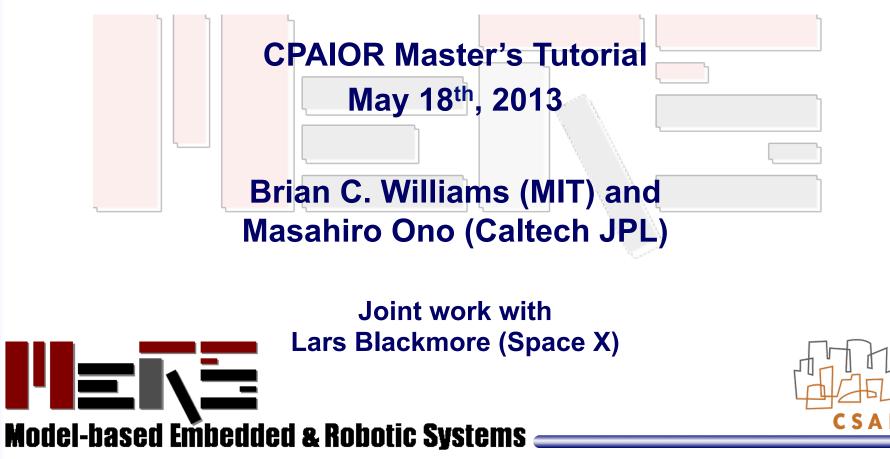
Massachusetts Institute of Technology

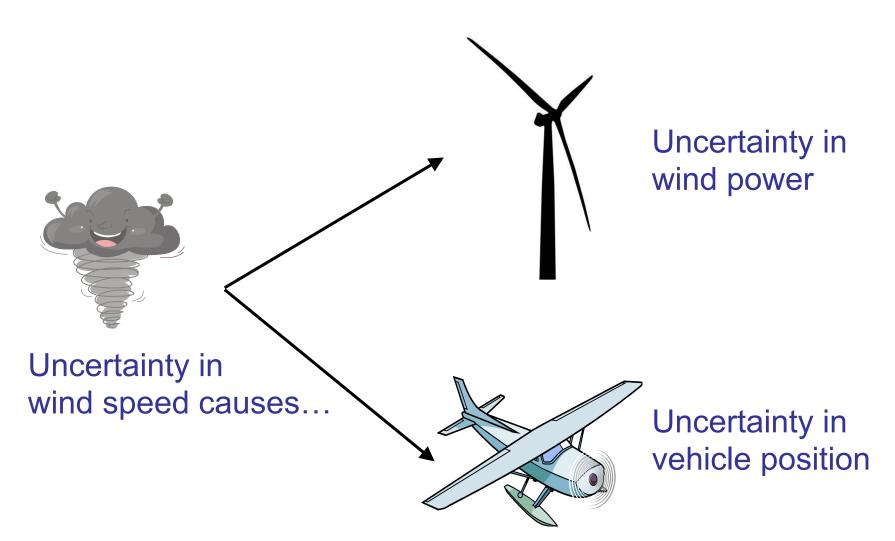
Stochastic Optimization and Risk Allocation



The world is uncertain.

Some levels of risk are unacceptable.

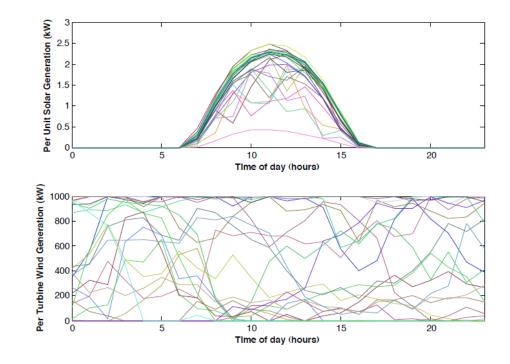
Impact of Uncertainty on Dynamic Systems



Motivation: High Penetration of Renewables

Electrical grid must prepare for high penetration of renewables.

Challenge: Wind and solar are undispatchable, intermittent, and unpredictable.



Massachusetts Institute of Technology

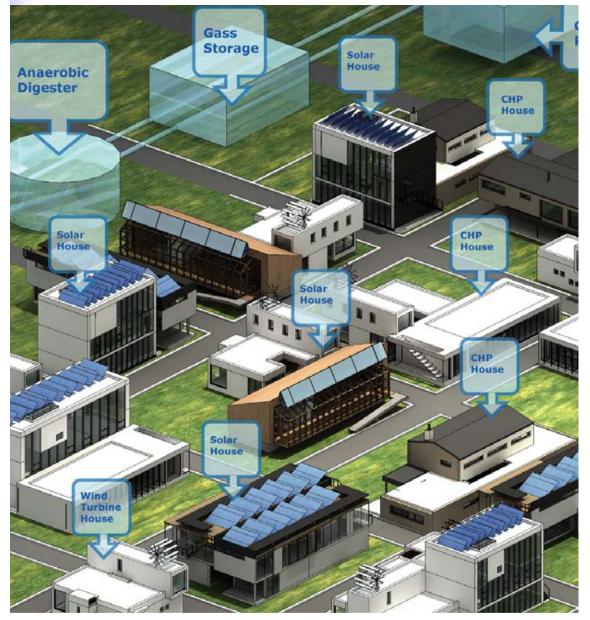
Sustainable Homes

- Goal: Optimally control HVAC, window opacity, washer/dryer, e-car.
- Objective: Minimize energy cost.
- Uncertainty: Solar input, outside temp, energy supply, occupancy.
- Risk: Resident goals not satisfied; occupant uncomfortable.

Connected Sustainable Homes Testbed Federico Casalegno (PI), MIT Mobile Experience Lab

Model-based Embedded & Robotic Systems

(Sub)Urban Scale Sustainability



- Heterogeneous connected homes with different energy sources.
- Symmetric energy exchange between houses.
- Challenge:
 - How to distribute energy optimally,
 - while limiting the risk of an energy shortage,
 - without centralized control.

Bottom-Up Grid Project, MIT-EI-Tata.

• Barrier to adoption due to range anxiety.

Vehicle Electrification and Autonomy

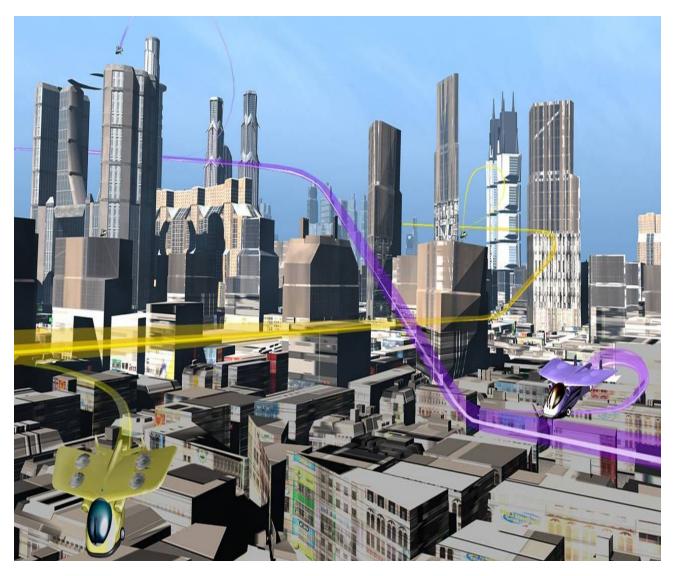


Image courtesy of Boeing Research & Technology

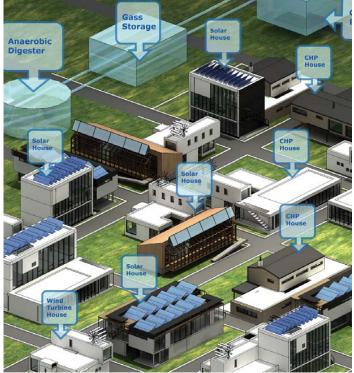


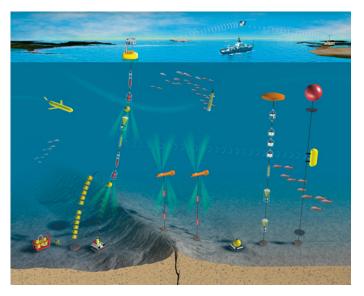
Environmental Observing Systems

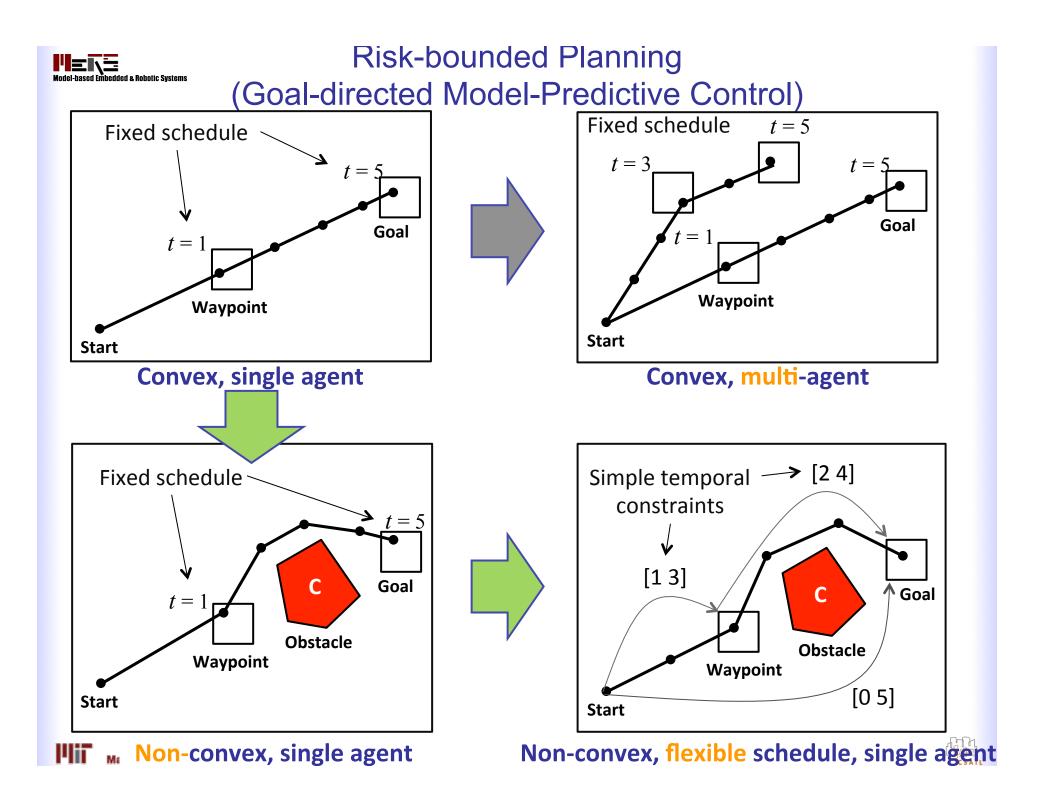
• Barriers to high science return include operational cost and mission risk.

Joint collaboration with Woodshole Deep Submergence Lab and The Monterrey Bay Aquarium Research Institute

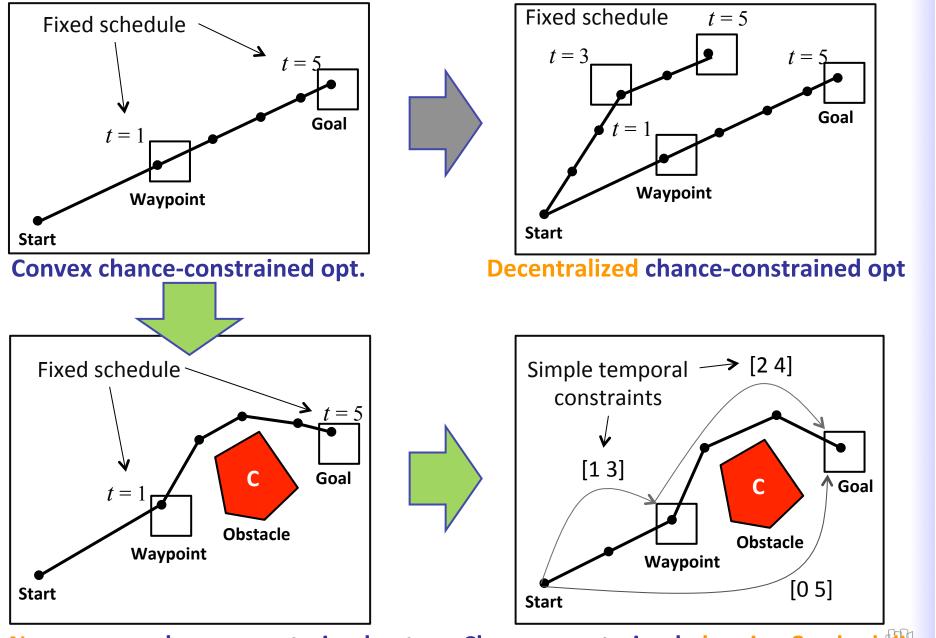
Facilitating Sustainability Requires Managing Risk







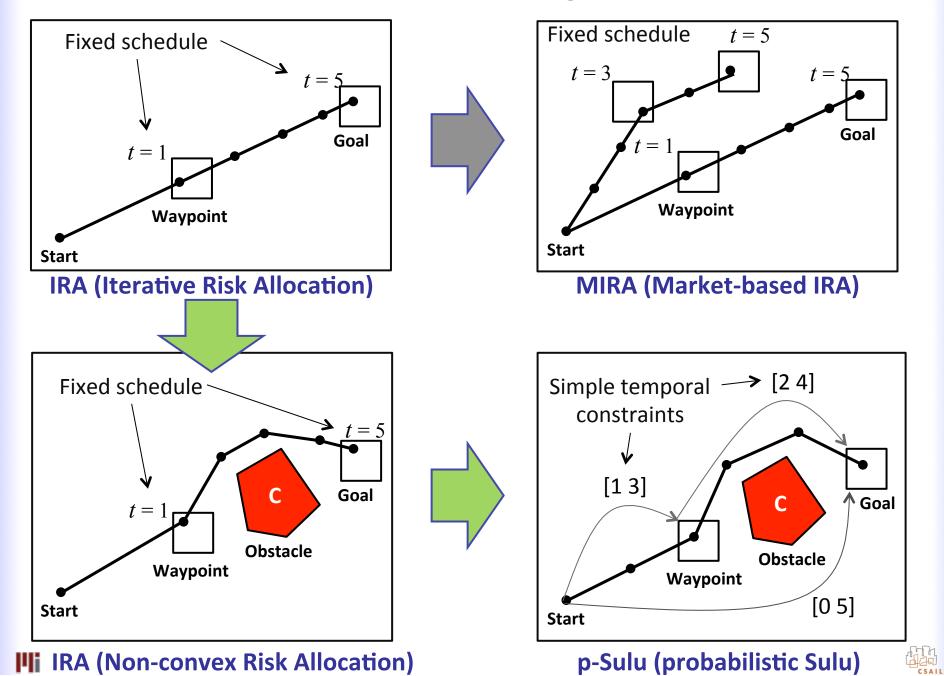
Model-based Embedded & Robotic Systems Stochastic Optimization Problems



Non-convex, chance-constrained opt

Chance-constrained planning & scheduling

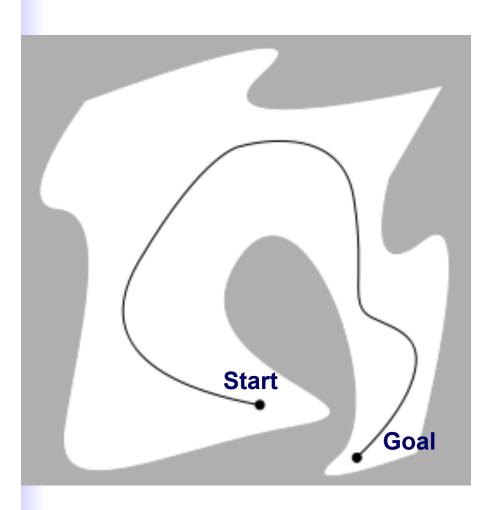
Risk Allocation Algorithms



Outline

- Goal-directed, Model-Predictive Control
- Stochastic Optimization
- Iterative Risk Allocation
- Optimal Risk Allocation
- Appendix: Multi-agent Risk Allocation

Model-Predictive Control



 Plan control trajectory = constraint optimization

 $\min_{p} J(p)$ s.t.

 $p \in P$

p: path*P*: Set of feasible paths*J*: cost function

Robotic Syste

Finite Horizon Model-Predictive Control

• Formulate as Linear (LP), Mixed Integer (MILP) or Mixed-Logic (MLLP) Program.

$$\begin{split} \min_{\mathbf{x}_{1:N}, \mathbf{u}_{1:N}} J(\mathbf{x}_{1} \cdots \mathbf{x}_{N}, \mathbf{u}_{1} \cdots \mathbf{u}_{N}) & \text{Cost function} \\ s.t. \\ \mathbf{x}_{k+1} &= \mathbf{A}\mathbf{x}_{k} + \mathbf{B}\mathbf{u}_{k} \quad (k = 0, 1, \cdots N - 1) & \text{Dynamics} \\ \mathbf{H}\mathbf{x}_{k} &\leq \mathbf{g} \quad (k = 0, 1, \cdots N) & \text{Spatial constraints} \end{split}$$

$$\mathbf{X}_0 = \mathbf{X}_{\text{start}}$$
 Initial position and velocity

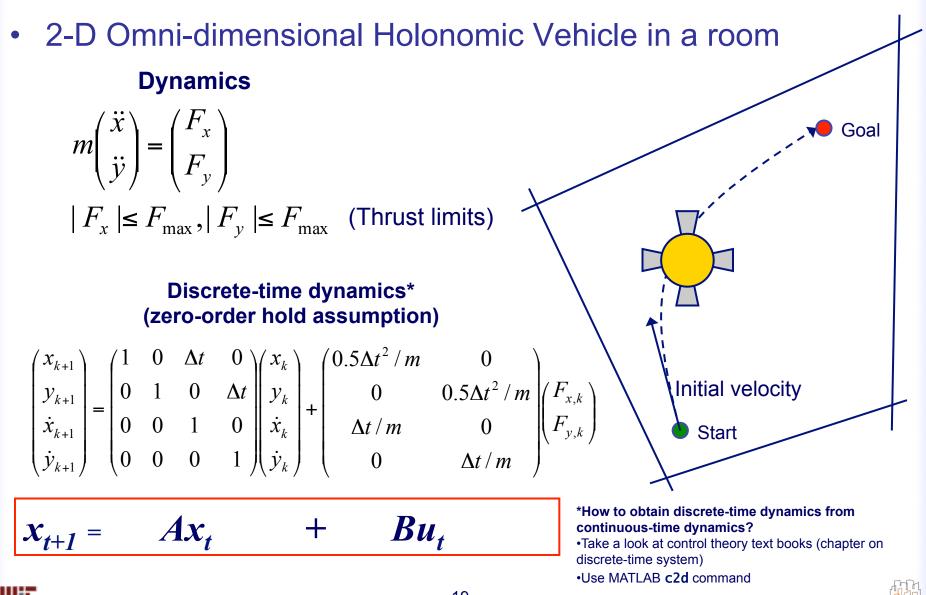
 $\mathbf{X}_N = \mathbf{X}_{\text{goal}}$ Goal position and velocity

$$-\mathbf{u}_{\max} \le \mathbf{u}_k \le \mathbf{u}_{\max}$$
 $(k = 0, 1, \dots N - 1)$ Actuation limits

$$\mathbf{x}_{k} \equiv \begin{pmatrix} x_{k} & y_{k} & \dot{x}_{k} & \dot{y}_{k} \end{pmatrix}^{T}, \quad \mathbf{u}_{k} \equiv \begin{pmatrix} F_{x,k} & F_{y,k} \end{pmatrix}^{T}$$

Massachusetts Institute of Technology

Example Constraints



Example Constraints

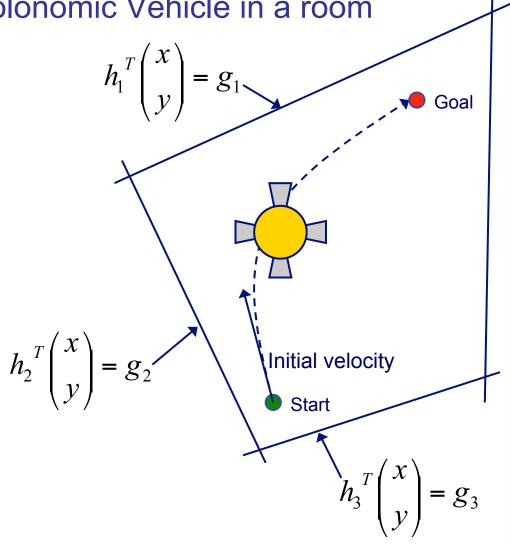
Spatial constraints: Vehicle must be in the room

$$\bigwedge_{n=1}^{4} h_n^T \begin{pmatrix} x \\ y \end{pmatrix} \le g_n$$

Oľ

edded & Robotic Syste

 $Hx \leq g$



Example Cost Function

- What cost function should we use?
 - Example: minimum control effort

$$J(\mathbf{x}_{1}\cdots\mathbf{x}_{N},\mathbf{u}_{1}\cdots\mathbf{u}_{N-1}) = \sum_{k=1}^{N-1} \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{u}_{k} = \sum_{k=1}^{N-1} |F_{x,k}| + |F_{y,k}|$$

- Problem: This is not a linear function!!
- There are tricks.

$$\min |u| \qquad \underset{u^+ \ge 0, u^- \ge 0,}{\min u^+ + u^-} \qquad \underset{v \ge u, v \ge -u,}{\min v}$$

Formulation of Receding Horizon Control

$$\begin{array}{l} \displaystyle \min_{\mathbf{x}_{1:N},\mathbf{u}_{1:N}} J(\mathbf{x}_{1}\cdots\mathbf{x}_{N},\mathbf{u}_{1}\cdots\mathbf{u}_{N}) + f(\mathbf{x}_{N}) \\ \text{Cost function} \\ s.t. \\ \mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_{k} + \mathbf{B}\mathbf{u}_{k} \quad (k = 0, 1, \cdots N - 1) \\ \mathbf{H}\mathbf{x}_{k} \leq \mathbf{g} \quad (k = 0, 1, \cdots N) \\ \mathbf{H}\mathbf{x}_{k} \leq \mathbf{g} \quad (k = 0, 1, \cdots N) \\ \mathbf{x}_{0} = \mathbf{x}_{\text{start}} \\ \text{Initial position and velocity} \\ \text{It is not a good idea to fix N (time horizon)} \\ \mathbf{x}_{N} = \mathbf{x}_{\text{goal}} \\ \end{array}$$

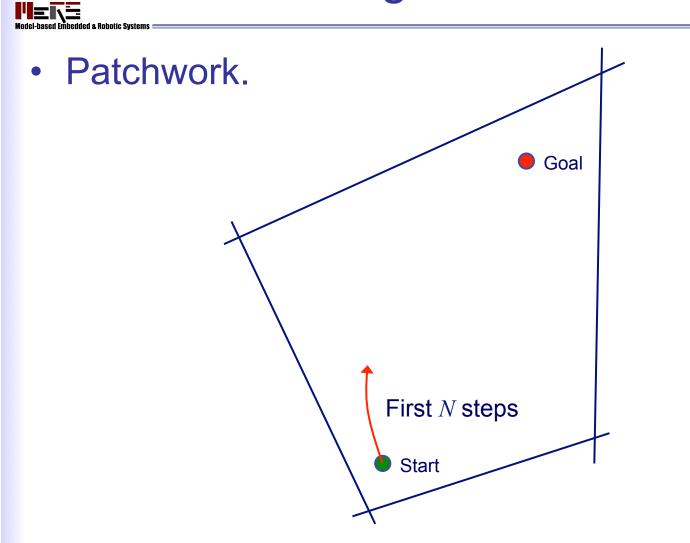
Massachusetts Institute of Technology

 $\mathbf{x}_{k} \equiv \begin{pmatrix} x_{k} & y_{k} & \dot{x}_{k} & \dot{y}_{k} \end{pmatrix}^{T}, \quad \mathbf{u}_{k} \equiv \begin{pmatrix} F_{x,k} & F_{y,k} \end{pmatrix}^{T}$

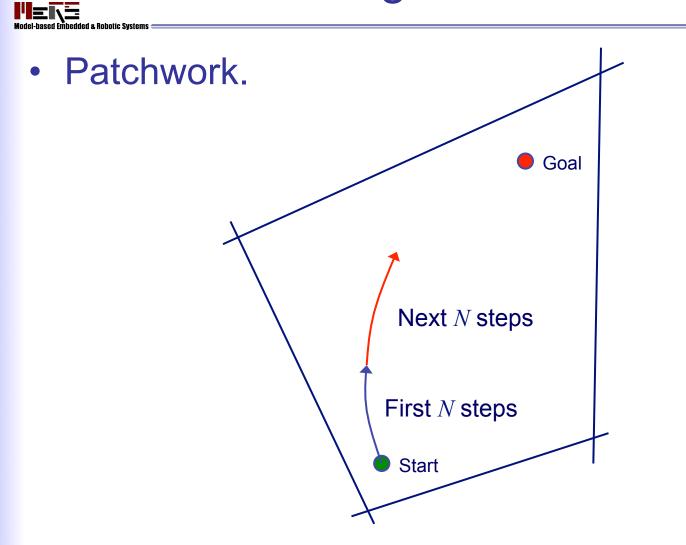
 $-\mathbf{u}_{\max} \leq \mathbf{u}_k \leq \mathbf{u}_{\max} \quad (k = 0, 1, \dots N - 1)$

Thrust limits

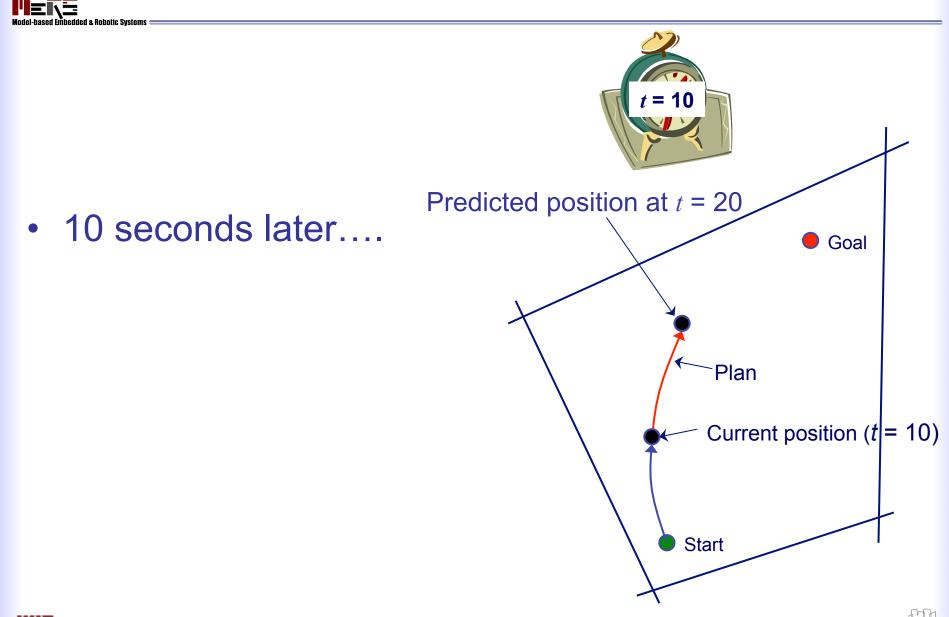
Receding Horizon Control



Receding Horizon Control

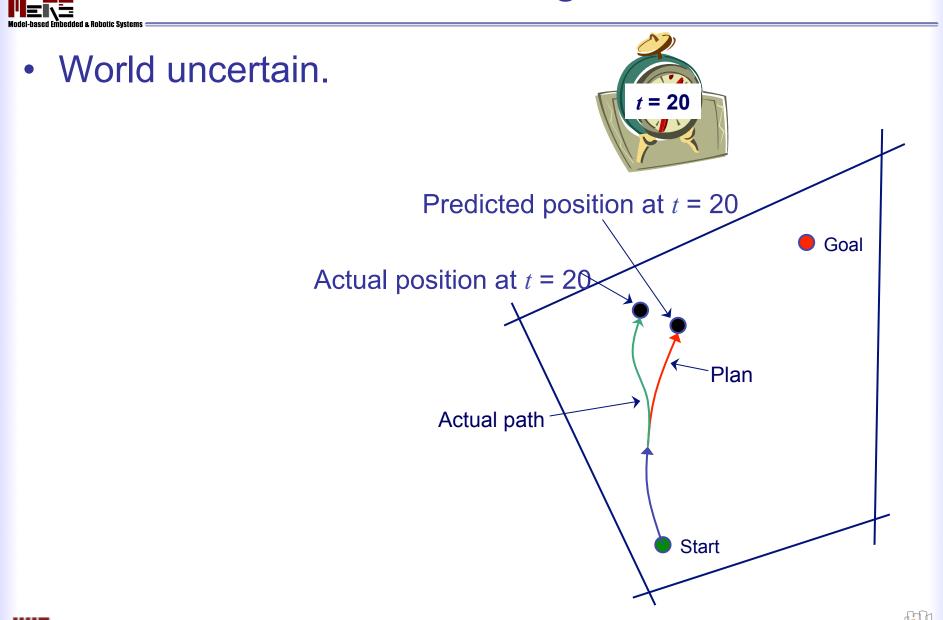


More on Receding Horizon

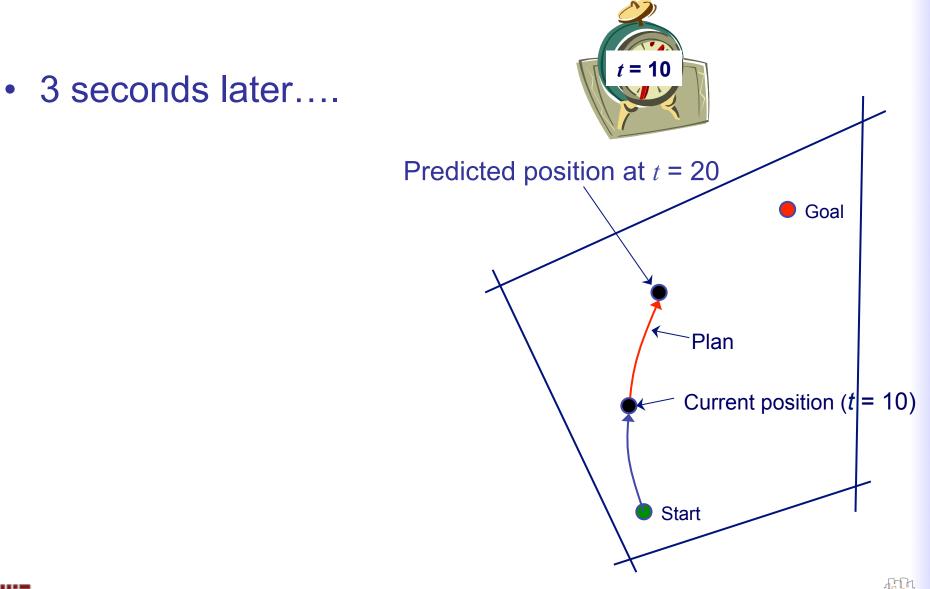


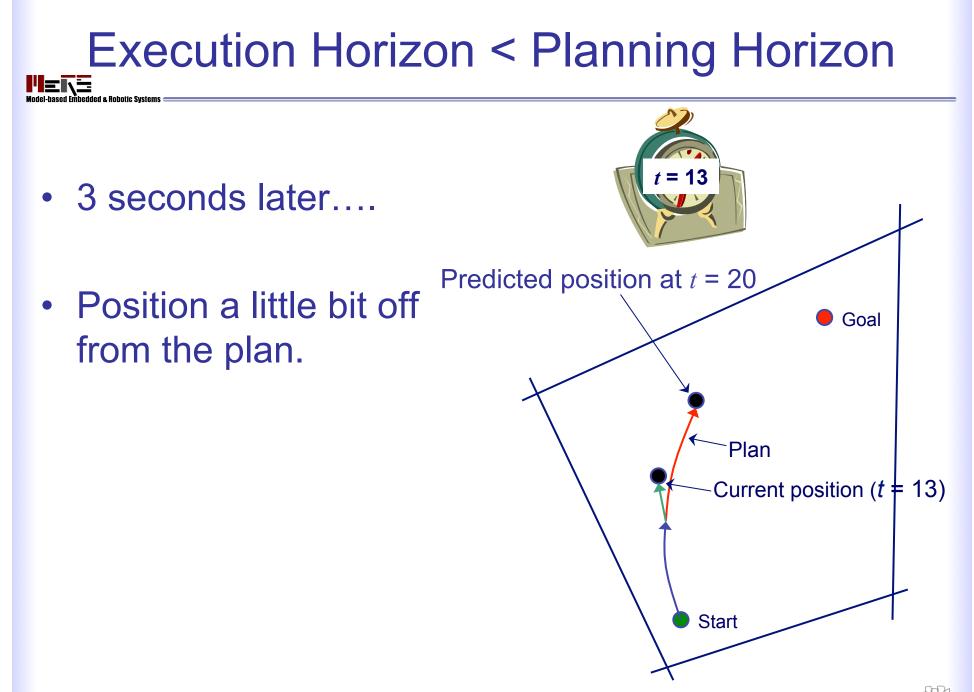
Massachusetts Institute of Technology

More on Receding Horizon

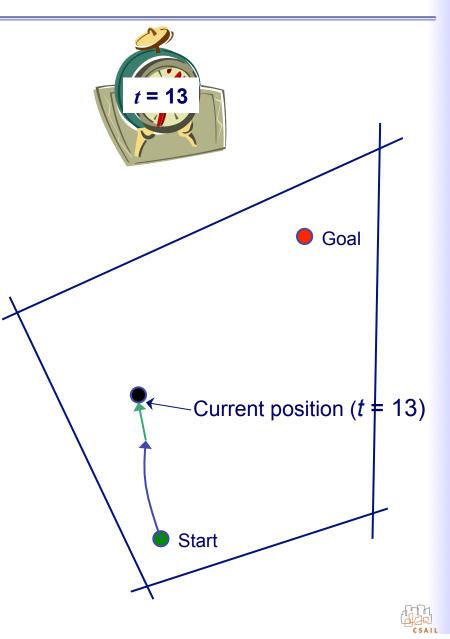


Execution Horizon < Planning Horizon





Execution Horizon < Planning Horizon



Execution Horizon < Planning Horizon Model-based Embedded & Robotic Systems = 16 Abandon the plan after t = 13. Predicted position at t = 23Goal Replan for another planning horizon. Current position ($t \neq 13$) Repeat. Start

Test bed: Connected Sustainable Home F. Casalegno & B. Mitchell, MIT Mobile Experience Lab

- Goal: Optimally control HVAC, window opacity, washer and dryer, e-car.
- Objective: Minimize energy cost.

"Maintain room temperature after waking up until I go to work. No temperature constraints while I'm at work, but when I get home, maintain room temperature until I go to sleep. Maintain a comfortable sleeping temperature while I sleep.

II E I\ E

Also, dry my clothes before morning.

I need to use my car to drive to and from work, so make sure it is fully charged by morning.

It's acceptable if my clothes aren't ready by morning or if the house is a couple degrees too cold, but my car absolutely needs to be ready to use before I leave for work."

"Maintain room temperature after waking up until I go to work. No temperature constraints while I'm at work, but when I get home, maintain room temperature until I go to sleep. Maintain a comfortable sleeping temperature while I sleep. Also, dry my clothes before morning. I need to use my car to drive to and from work, so make sure it is fully charged by morning. It's acceptable if my clothes aren't ready by morning or if the house is a couple degrees too cold, but my car absolutely needs to be ready to use before I leave for work."

Flexibility Available to Control

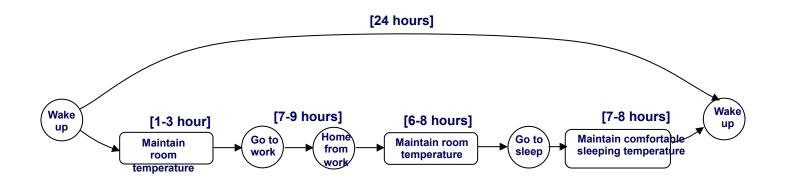
• When activities are performed.

• When to charge/discharge batteries.

• Which activities to shed (when supply is low).

Encoding: Qualitative State Plan (QSP)

Sulu [Leaute & Williams, AAAI05]

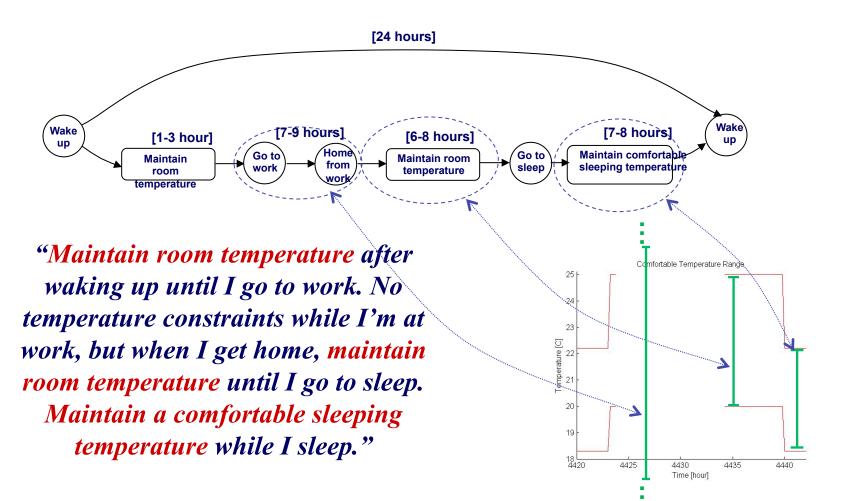


"Maintain room temperature after waking up until I go to work. No temperature constraints while I'm at work, but when I get home, maintain room temperature until I go to sleep. Maintain a comfortable sleeping temperature while I sleep."

hedded & Robotic Systems

Encoding: Qualitative State Plan (QSP)

Sulu [Leaute & Williams, AAAI05]



hedded & Robotic Systems

Encode the Qualitative State Plan and Dynamics within a Model-Predictive Controller

Sulu [Leaute & Williams, AAAI05]

Cost
$$\min_{\mathbf{U}} J(\mathbf{X}, \mathbf{U}) + H(x_T)$$

S.*t***.**

Dynamics (Discrete time)

$$\bigvee_{0 \le t \le T-1} x_{t+1} = Ax_t + Bu_t$$

Constraints

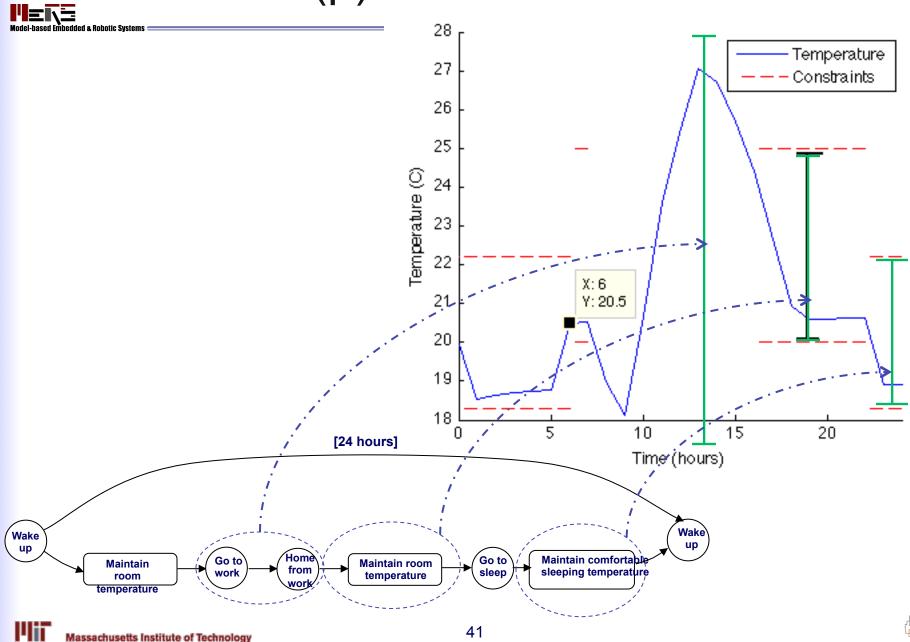
State

 $\begin{aligned} & \stackrel{T}{\underset{t=0}{\wedge}} \stackrel{N}{\underset{i=0}{\wedge}} \stackrel{M}{\underset{j=0}{\wedge}} h_{t}^{iT} x_{t} \leq g_{t}^{ij} \\ & \mathbf{X} = \begin{bmatrix} x_{0} \cdots x_{t} \end{bmatrix}^{T} \\ & \mathbf{U} = \begin{bmatrix} u_{0} \cdots u_{t-1} \end{bmatrix}^{T} \end{aligned}$

Control

Mixed Integer and Logic

(p)Sulu Results



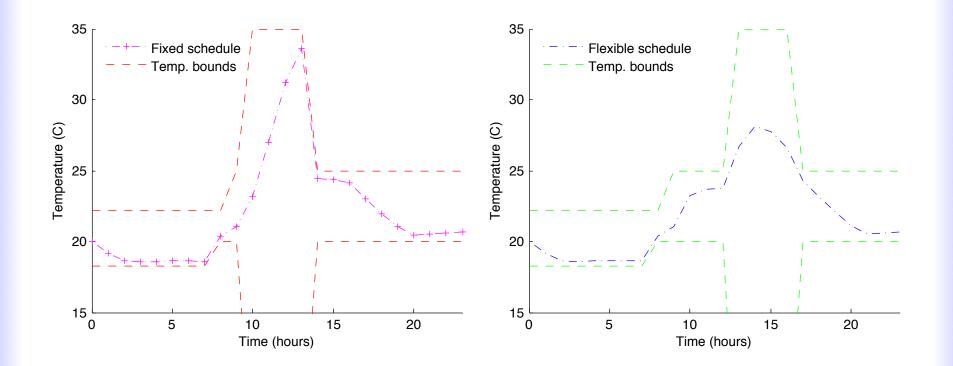
Energy Savings: Optimal Control

	Winter		Summer	
	Energy	Violation Rate	Energy	Violation Rate
p-Sulu	1.9379×10^4	0.000	3.4729×10^4	0
Sulu	1.6506×10^{4}	0.297	—	-
PID	$3.9783 imes 10^4$	0	4.1731×10^{4}	0
	Spring		Autumn	
	Sp	oring	Au	tumn
	Sp Energy	oring Violation Rate	Au Energy	tumn Violation Rate
p-Sulu		0		
p-Sulu Sulu	Energy	Violation Rate	Energy	Violation Rate

- 42.8% savings in winter over PID.
- 15.3%, 16.8%, and 4.4% in spring, summer, autumn.

edded & Robotic Systems

Additional Savings Due to Flexibility



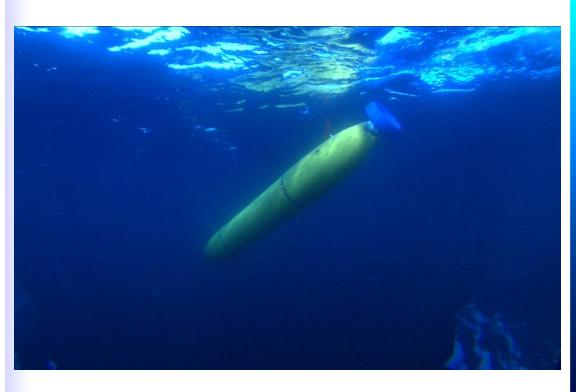
• 10.4%, 1.6%, 1.6%, and 0.7% in the winter, spring, summer, and autumn.

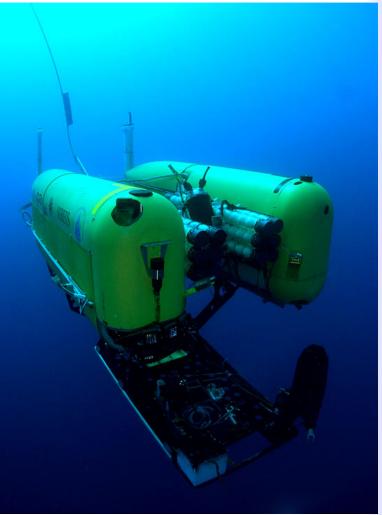
Outline

- Goal-directed, Model-Predictive Control
- Stochastic Optimization
- Iterative Risk Allocation
- Optimal Risk Allocation
- Appendix: Multi-agent Risk Allocation

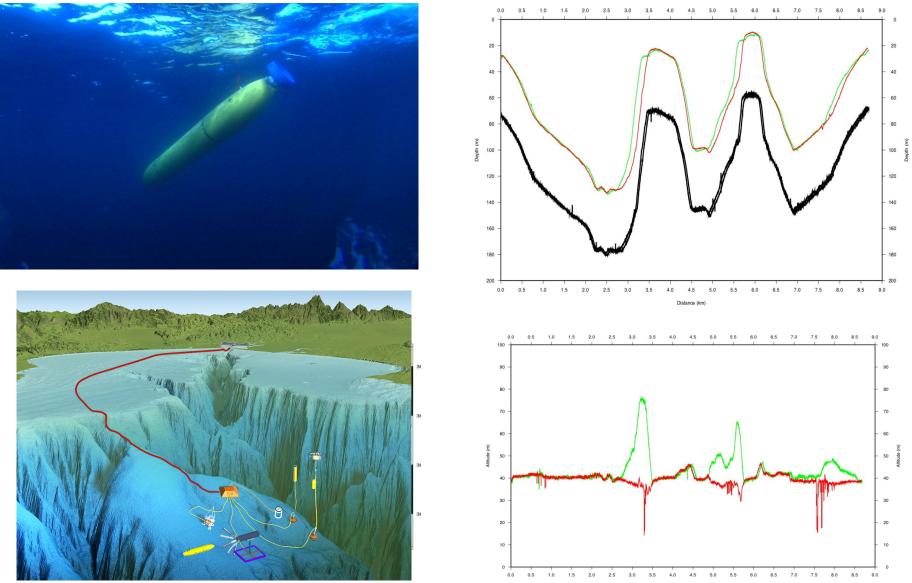
e Robotic Syst

The Danger of Ignoring Uncertainty





Problem: Managing Risk within Mission-Guidelines



Depth Navigation for Bathymetric Mapping – Jan. 23rd, 2008

Issue: Frequent Mission Aborts

Mission abort

Attitude is less than the minimum altitude

Actual trajectory

Planned trajectory

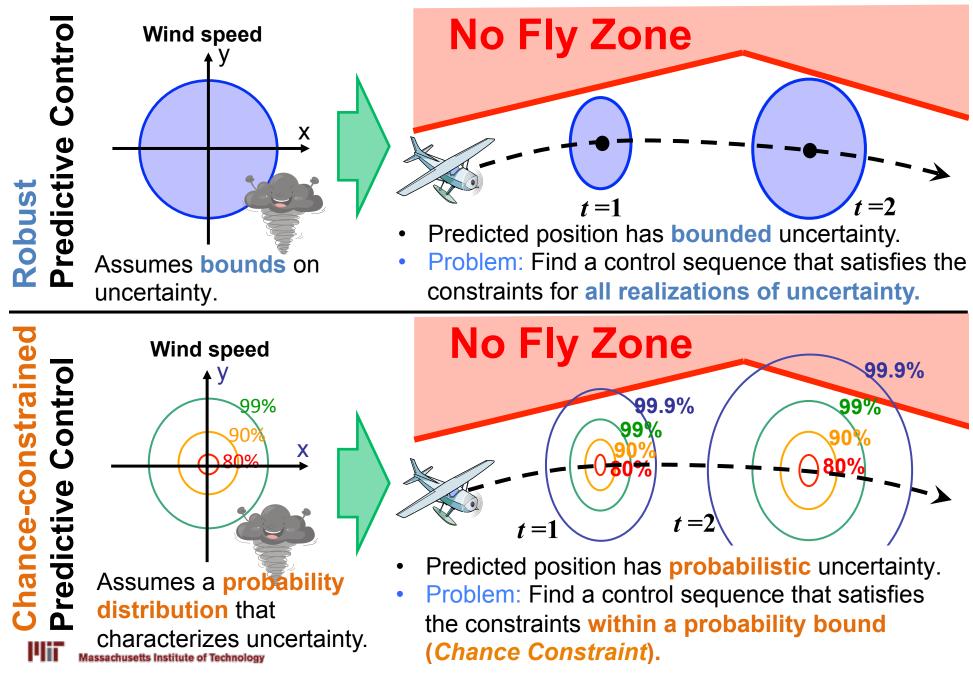
Minimum Altitude

Robust Model Predictive Control

- Receding horizon planners react to uncertainty after something goes wrong.
- Can't we take precautionary actions before something goes wrong?

•Ali A. Jalali and Vahid Nadimi, "A Survey on Robust Model Predictive Control from 1999-2006."

Robotic Systems



Incorporating Uncertainty

 Deterministic discrete-time LTI model

$$x_{t+1} = Ax_t + Bu_t$$

Additive uncertainty

$$x_{t+1} = Ax_t + Bu_t + w_t$$

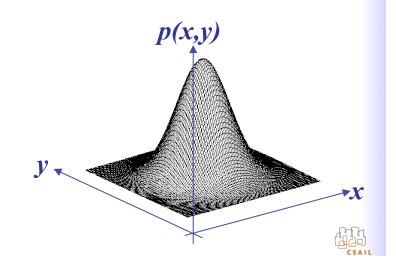
Multiplicative uncertainty

$$x_{t+1} = (A + \Delta A)x_t + Bu_t$$

 $w_t \in W$

►x

$$p(w_t) = N(\hat{w}_t, \mathbf{P}_0)$$



What to Minimize? (Bounded Uncertainty)

Minimize the worst case cost

 $\min_{\mathbf{U}} \max_{w \in W} J(\mathbf{X}, \mathbf{U})$

$$s.t. \quad \bigvee_{w \in W} h_t^{iT} x_t \le g_t^i$$

 $w \in W$: Bounded uncertainty

• Minimize nominal cost

 $\min_{\mathbf{U}} J(\overline{\mathbf{X}}, \mathbf{U}) : \text{Cost when } w = \mathbf{0}$ s.t. $\bigvee_{w \in W} h_t^{iT} x_t \leq g_t^i$ $w \in W : \text{Bounded uncertainty}$

What to Minimize? (Stochastic Uncertainty)

• Utilitarian approach

$$\min_{\mathbf{U}} J(\mathbf{X}, \mathbf{U}) + pf(\mathbf{U})$$

Penalty (constant)

Probability of failure

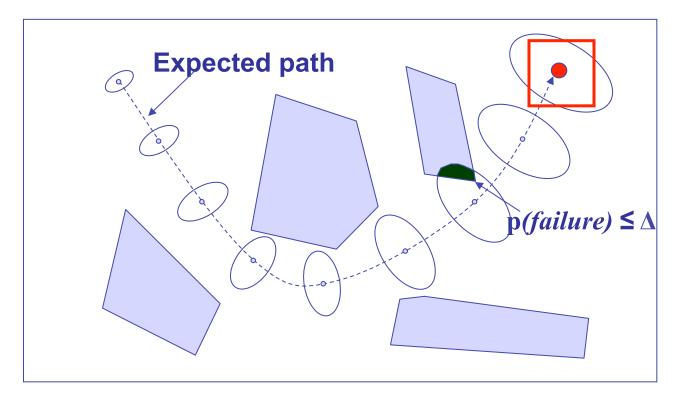
Chance constrained optimization

$$\min_{\mathbf{U}} J(\mathbf{\overline{X}}, \mathbf{U})$$

$$s.t. \quad f(\mathbf{U}) \leq \Delta$$
Probability of failure
$$53$$

Chanced Constrained, Robust Path Planning

- "Plan optimal path to goal such that $p(failure) \leq \Delta$."

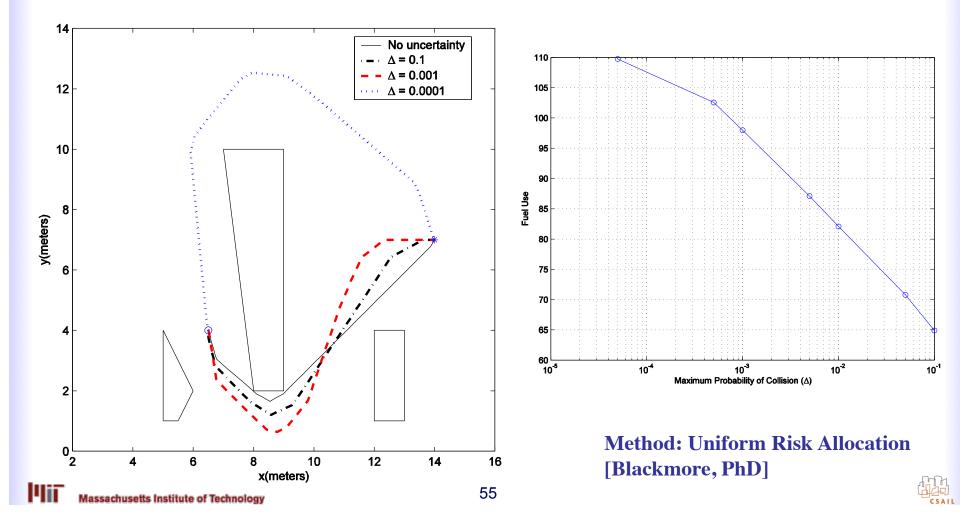


Risk – Performance Tradeoff

• Desired probability of failure used to trade performance against risk-aversion.

Ξ\Ξ

edded & Robotic System



RMPC with Chance Constraints

• MPC

 $\min J(\mathbf{X}, \mathbf{U})$ IJ

s.t.

Dynamics

(Discrete time)

Constraints

$$\begin{split} & \bigvee_{\substack{0 \leq t \leq T-1 \\ T \quad N \\ \Lambda \quad \wedge \\ t=0 \ i=0}} x_{t+1} = A x_t + B u_t \end{split}$$

RMPC with Chance Constraints edded & Robotic System $\min J(\mathbf{X}, \mathbf{U})$ *s.t*. Stochastic dynamics $\bigvee_{0 \le t \le T-1} x_{t+1} = Ax_t + Bu_t + W_t$ $\bigwedge_{\substack{t=0}}^{\Lambda}\bigwedge_{i=0}^{N}h_{t}^{iT}x_{t} \leq g_{t}^{i}$ **Constraints**

RMPC with Chance Constraints ΞΛΞ edded & Robotic Syste $\min J(\mathbf{X}, \mathbf{U})$ *s.t*. Stochastic dynamics $\forall x_{t+1} = Ax_t + Bu_t + w_t$ $0 \le t \le T-1$ Gaussian distribution $w_t \sim N(0, \Sigma_t)$ $x_0 \sim N(\overline{x}_0, \Sigma_{x,0})$ $\sum_{t=0}^{T} \sum_{i=0}^{N} h_t^{iT} x_t \leq g_t^i$ **Constraints**

RMPC with Chance Constraints Ξ\Ξ $\min J(\mathbf{X}, \mathbf{U})$ *s.t.* Stochastic dynamics $\bigvee_{0 \le t \le T-1} x_{t+1} = Ax_t + Bu_t + W_t$ $W_t \sim N(0, \Sigma_t)$ $x_0 \sim N(\overline{x}_0, \Sigma_{x,0})$ $\bigwedge_{\substack{t=0}}^{T} \bigwedge_{i=0}^{N} h_{t}^{iT} x_{t} \leq g_{t}^{i}$ **Constraints**

RMPC with Chance Constraints ENE $\min J(\mathbf{X}, \mathbf{U})$ *s.t*. Stochastic dynamics $\bigvee_{0 \le t \le T-1} x_{t+1} = Ax_t + Bu_t + W_t$ Upper bound on the $W_t \sim N(0, \Sigma_t)$ Upper bound on the probability of failure = Risk bound. $x_0 \sim N(\overline{x}_0, \Sigma_{x,0})$ $\Pr\left[\bigwedge_{t=0}^{T} \bigwedge_{i=0}^{N} h_{t}^{iT} x_{t} \le g_{t}^{i}\right] \ge 1 - \Delta$ **Chance constraint**

Solution Methods for Chance-Constrained Problems

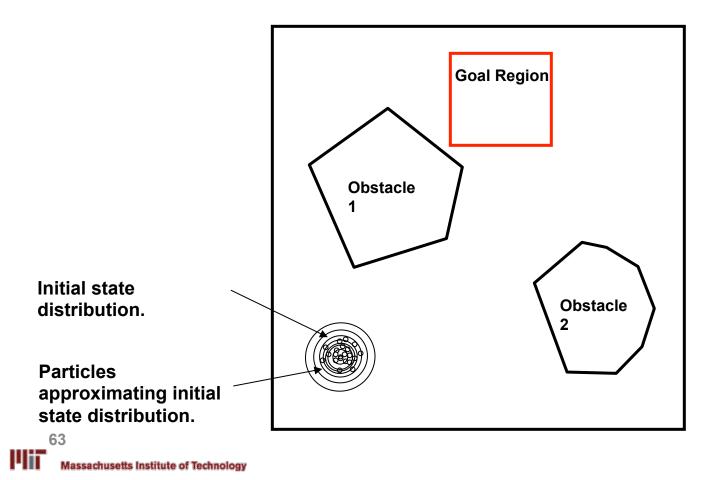
- Sampling based methods
 - Scenario-based
 - Bernardini and Bemporad, 2009
 - Particle control
 - Blackmore et al., 2010
- Non-sampling-based methods
 - Elliptic approximation
 - (direct extension of robust predictive control)
 - van Hessem, 2004
 - Risk allocation
 - Ono and Williams, 2008

Solution Methods for Chance-Constrained Problems

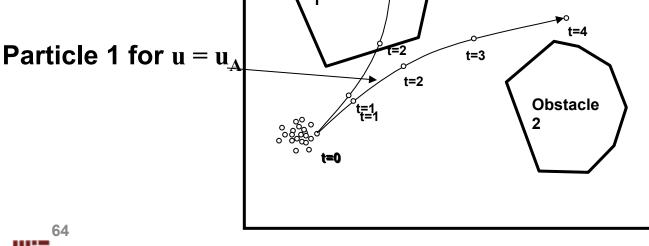
- Sampling based methods
 - Scenario-based (see Warren Powell's tutorial).
 - Bernardini and Bemporad, 2009
 - Particle control
 - Blackmore et al., 2010
- Non-sampling-based methods
 - Elliptic approximation
 - (direct extension of robust predictive control)
 - van Hessem, 2004
 - Risk allocation
 - Ono and Williams, 2008

1. Use particles to sample random variables.

$$\mathbf{X}_{c,0}^{(i)} \sim p(\mathbf{X}_{c,0}) \quad \mathbf{v}_t^{(i)} \sim p(\mathbf{v}_t) \qquad i = 1 \dots N \quad t = 0 \dots F$$

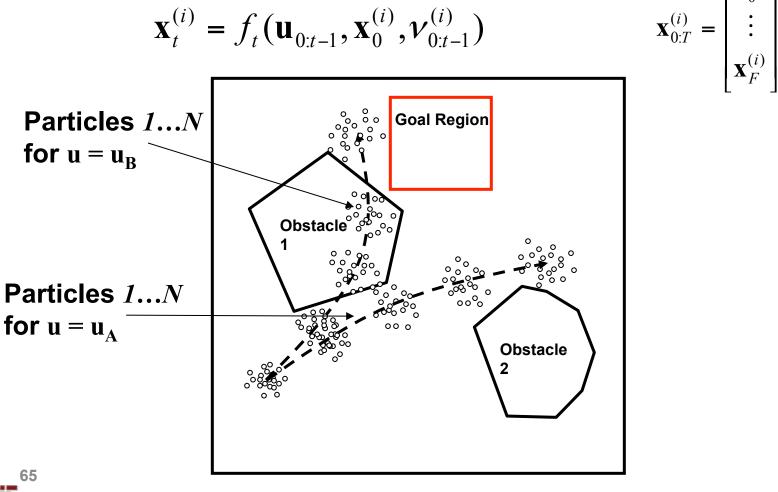


2. Calculate future state trajectory for each particle, leaving explicit, dependence on control inputs $\mathbf{u}_{0:T-1}$. $\mathbf{x}_{t}^{(i)} = f_{t}(\mathbf{u}_{0:t-1}, \mathbf{x}_{c,0}^{(i)}, \mathcal{V}_{0:t-1}^{(i)})$ $\mathbf{x}_{c,0:T}^{(i)} = \begin{bmatrix} \mathbf{x}_{c,0}^{(i)} \\ \vdots \\ \mathbf{x}_{c,F}^{(i)} \end{bmatrix}$ Particle 1 for $\mathbf{u} = \mathbf{u}_{\mathbf{R}}$

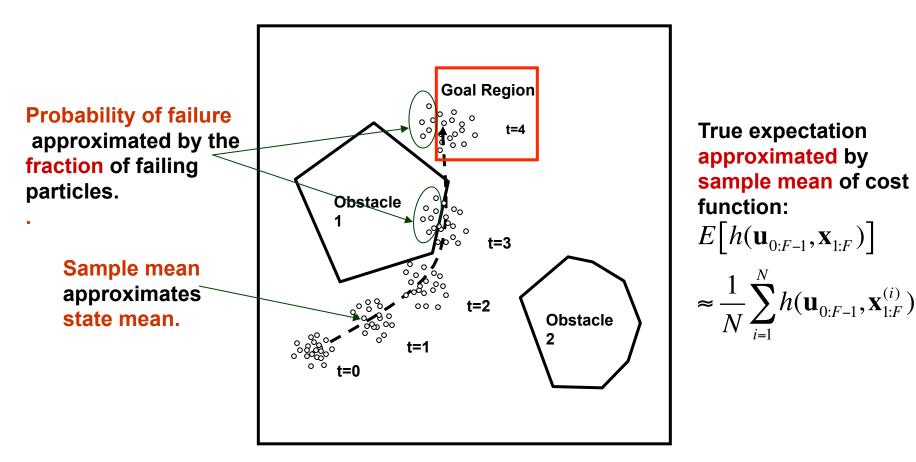


achusetts Institute of Technolog

2. Calculate future state trajectory for each particle, leaving explicit, dependence on control inputs $\mathbf{u}_{0:T-1}$. $[\mathbf{x}_{0}^{(i)}]$

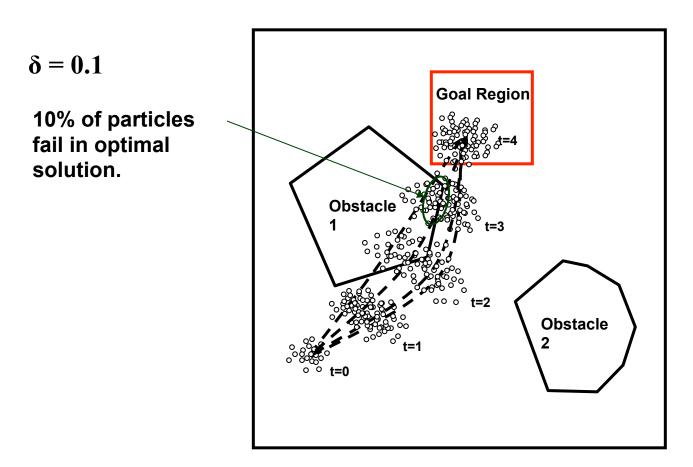


3. Express chanc-constraints of optimization problem approximately in terms of particles.



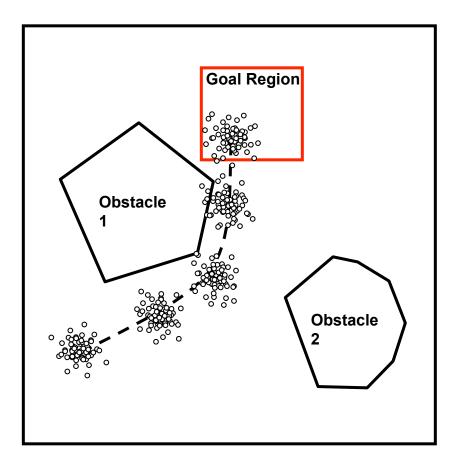
66 Massachusetts Institute of Technology

4. Solve approximate **deterministic** optimization problem for $\mathbf{u}_{0:F-1}$.



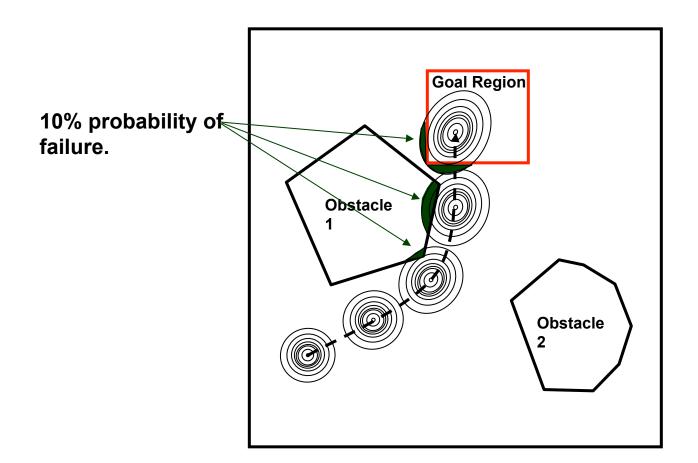
Convergence

- As $N \rightarrow \infty$, approximation becomes exact.

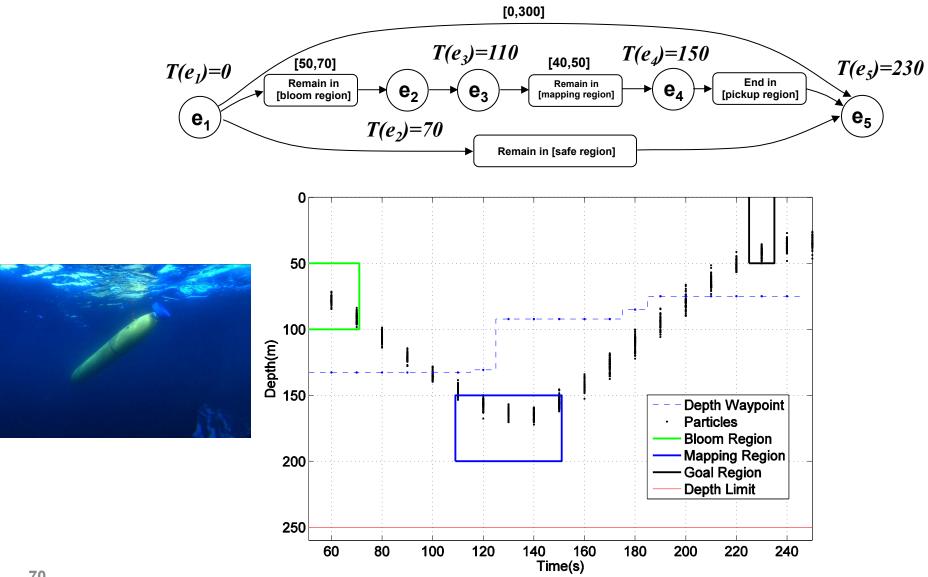


Convergence

- As $N \rightarrow \infty$, approximation becomes exact.



MBARI AUV Science Mission



Solution Methods for Chance-Constrained Problems

- Sampling based methods
 - Scenario-based
 - Bernardini and Bemporad, 2009
 - Particle control
 - Blackmore et al., 2010
- Non-sampling-based methods
 - Elliptic approximation

(direct extension of robust predictive control)

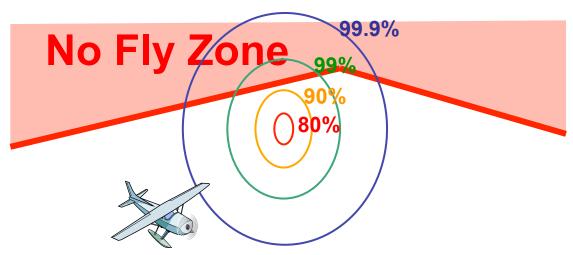
- van Hessem, 2004
- Risk allocation
 - Ono and Williams, 2008

Elliptic Approximation

Chance constraint: **Risk < 1%**

Elliptic Approximation

Chance constraint: **Risk < 1%**

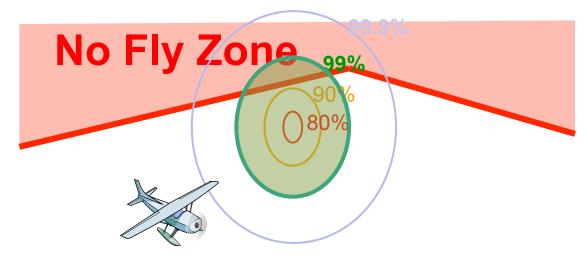


1. Specify the probability distribution of the future states as a function of control inputs.

Note: When planning in an N-dimensional state space over time steps, a joint distribution over an N-dimensional space must be considered.

Elliptic Approximation

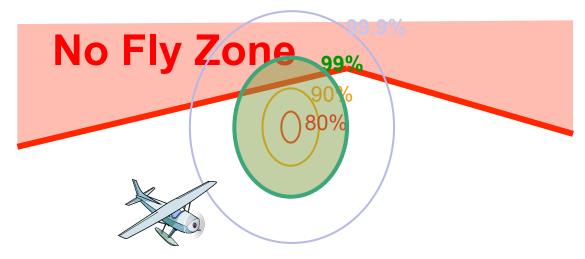
Chance constraint: **Risk < 1%**



- 1. Specify the probability distribution of the future states as a function of control inputs.
- 2. Find a 99% probability ellipse.

Elliptic Approximation

Chance constraint: **Risk < 1%**

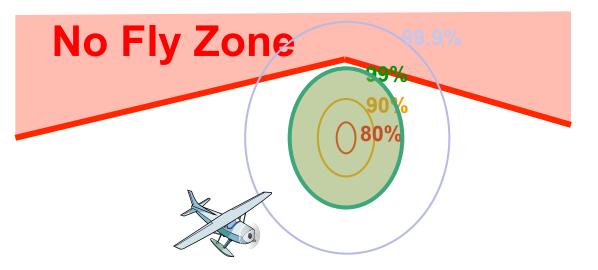


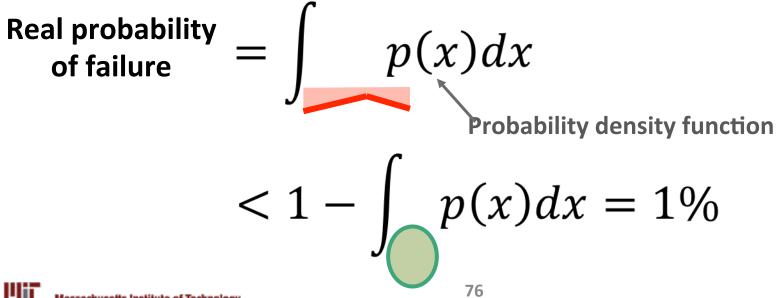
- 1. Specify the probability distribution of the future states as a function of control inputs.
- 2. Find a 99% probability ellipse.
- Find a control sequence that makes sure that the probability ellipse is within the constraint boundaries.

Massachusetts Institute of Technology

Conservatism of Elliptic Approximation

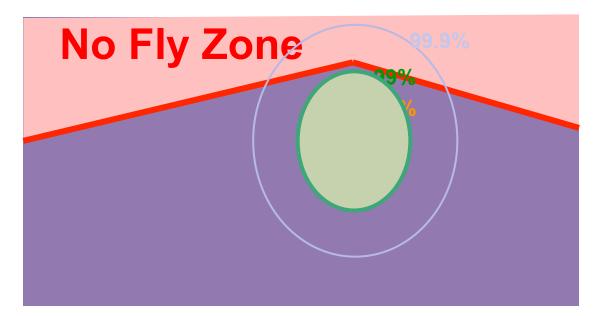
Issue: often very conservative





Conservatism of Elliptic Approximation

Issue: often very conservative.

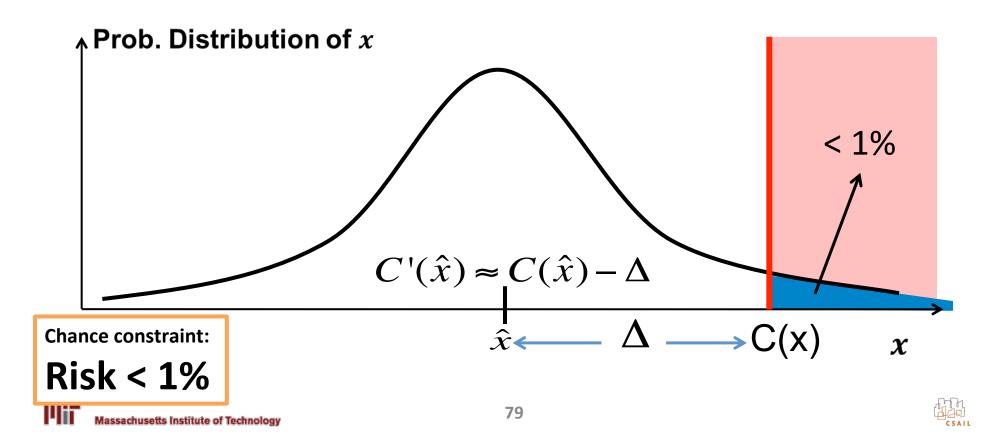


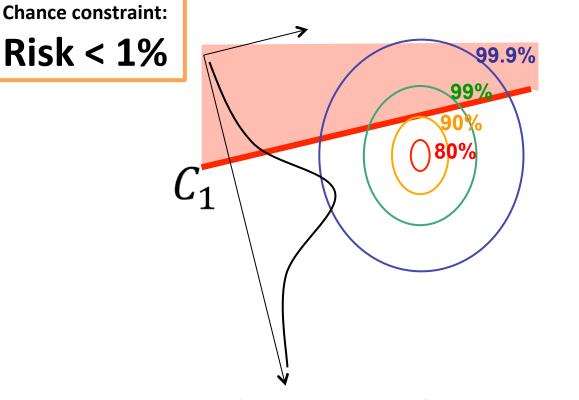
Conservatism=
$$\int p(x) dx$$

Solution Methods for Chance-Constrained Problems

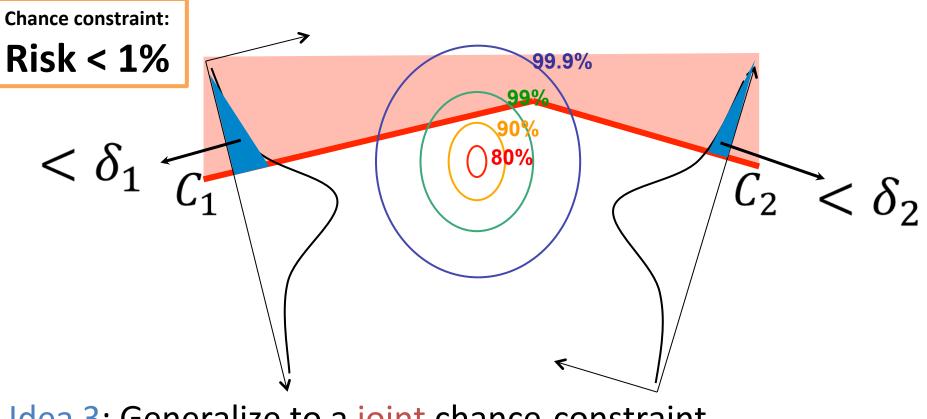
- Sampling based methods
 - Scenario-based
 - Bernardini and Bemporad, 2009
 - Particle control
 - Blackmore et al., 2010
- Non-sampling-based methods
 - Elliptic approximation
 - (direct extension of robust predictive control)
 - van Hessem, 2004
 - Risk allocation
 - Ono and Williams, 2008

Idea 1: We easily solve a chance constrained problem with one linear constraint C and one normally distributed random variable x, by reformulating C to a deterministic constraint C'.

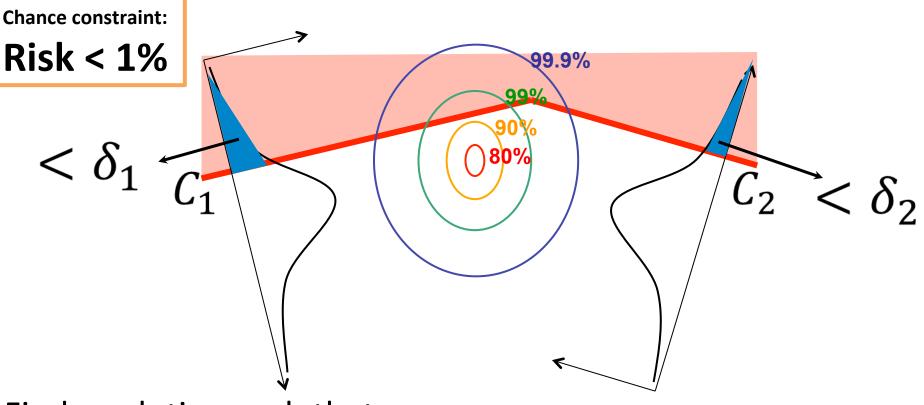




Idea 2: Generalize to a single constraint over an N-dimensional random variable, by projecting its distribution onto the axis perpendicular to the constraint boundary.



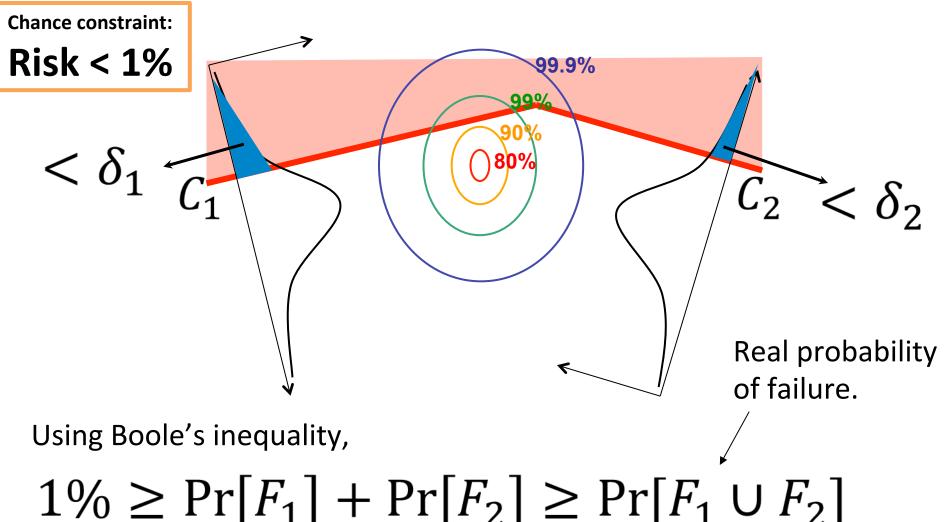
Idea 3: Generalize to a joint chance-constraint over multiple constraints C_1 , C_2 , by distributing risk.



Find a solution such that:

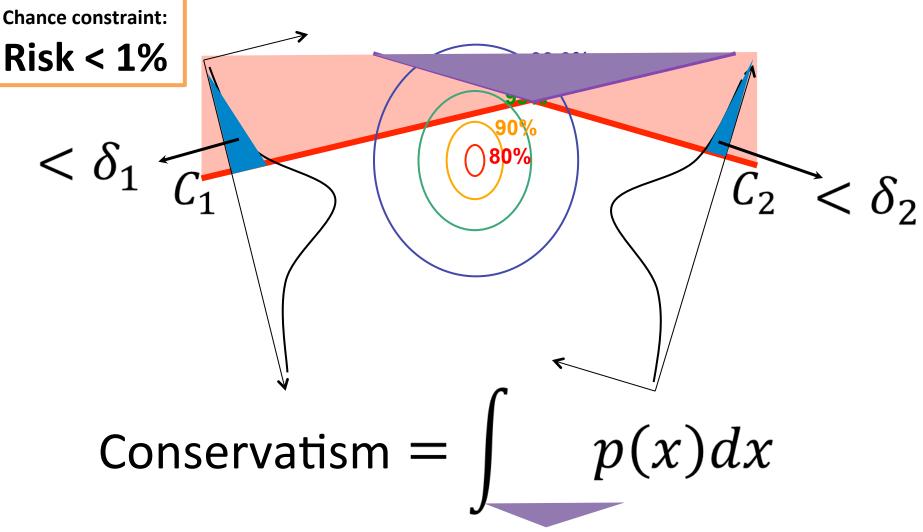
- 1. Each constraint C_i takes less than δ_i risk.
- 2. $\Sigma_i \delta_i \leq 1\%$

Note: this bound is derived from Boole's inequality.



where F_i is an event in which C_i is violated.

Risk-Allocation Approach: Conservatism



Significantly less conservative than the elliptic approximation, especially in a high-dimensional problem.

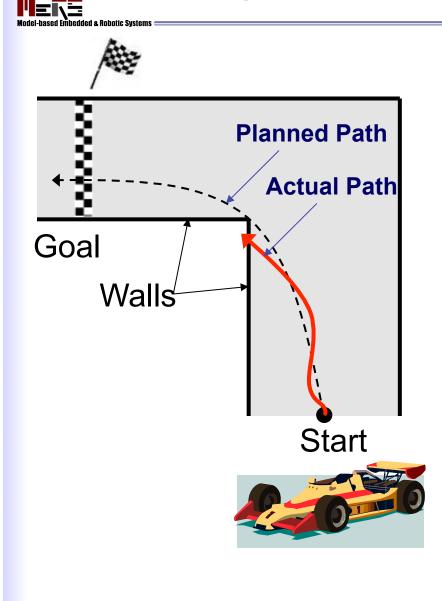
Model-based Embedded & Robotic Systems Managing Vehicles using Risk Allocation

Massachusetts Institute of Technology

Outline

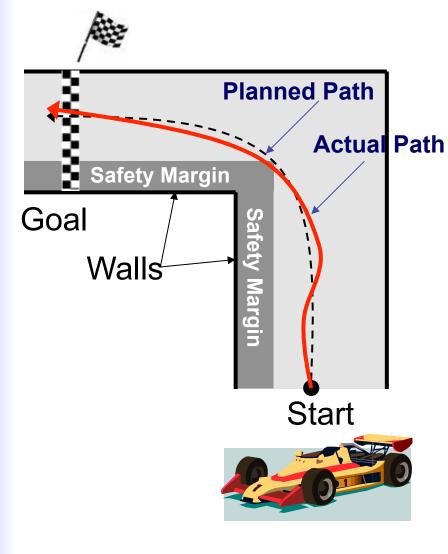
- Goal-directed, Model-Predictive Control
- Stochastic Optimization
- Iterative Risk Allocation
- Optimal Risk Allocation
- Appendix: Multi-agent Risk Allocation

Example: Race Car Path Planning



- A race car driver wants to go from the start to the goal as fast as possible.
- Actual path may differ from the planned path due to uncertainty.
- Crashing into the wall may kill the driver.
- Driver wants a probabilistic guarantee: P(crash) < 0.1%
 - Chance constraint.

Idea: Plan Nominal Path using Safety Margin



Problem

Find the fastest path to the goal, while limiting the probability of crash Risk bound throughout the race to 0.1%

Approach:

- 1. Set **safety margin** that guarantees that the risk bound is satisfied.
- 2. Plan optimal nominal path within safety margin.

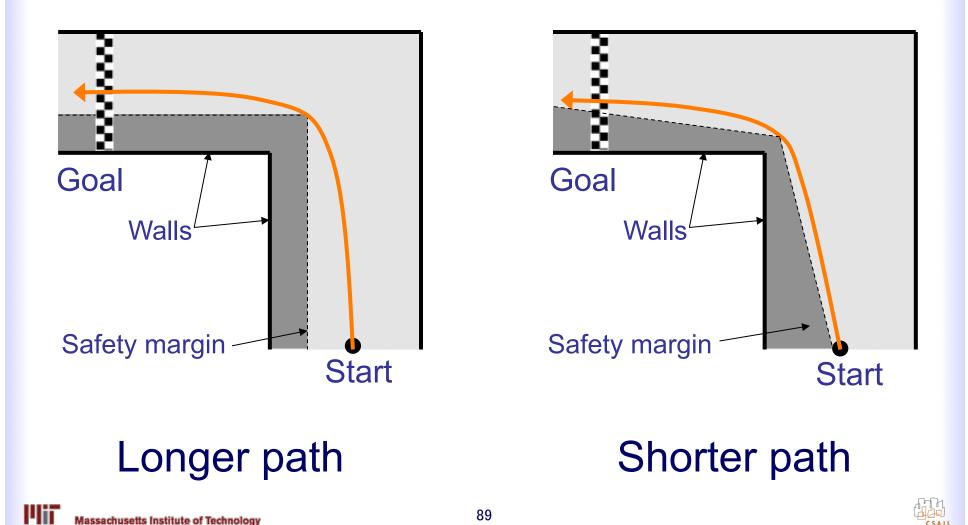
Simple Method: Uniform risk allocation.

IIEKE

Not All Safety Margins are Equal

Uniform width

Non-uniform width

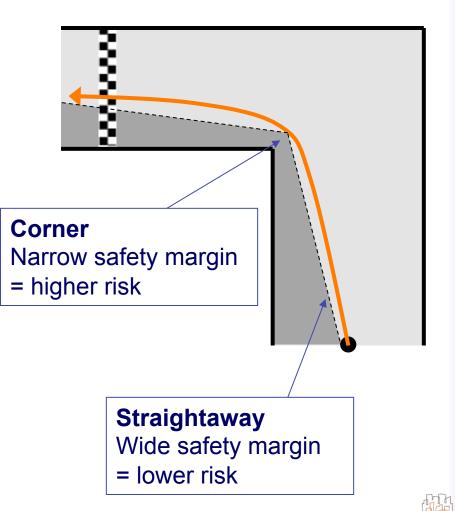


Idea: Design the Optimal Safety Margin by Allocating Risk

- Added risk at the corner shortens the path more than the same amount of risk at the straightaway.
 - Sensitivity of path length to changes in risk is higher near the corner.

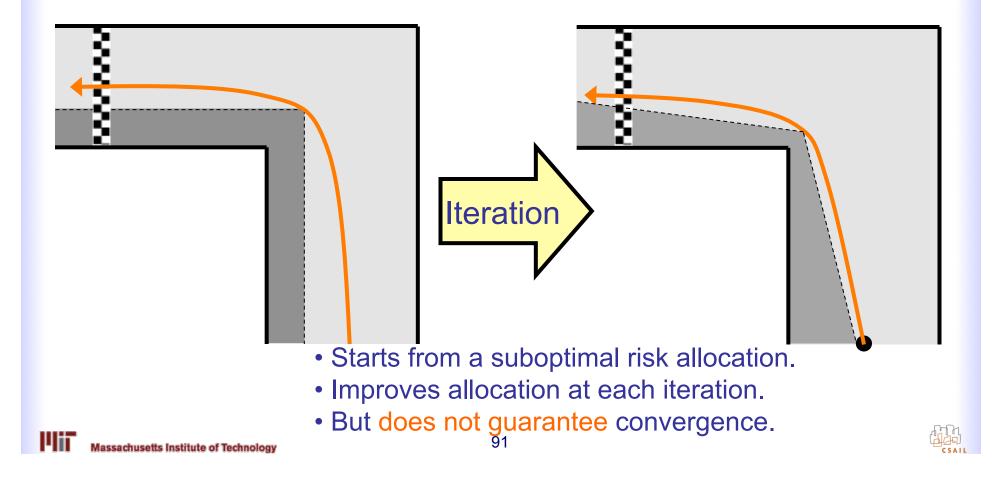
Risk Allocation:

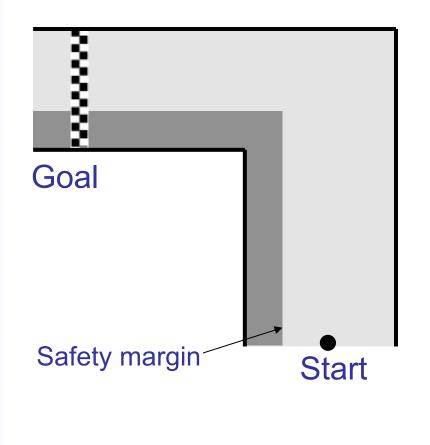
 Find an allocation of risk to constraints that results in the best feasible solution.



Descent algorithm

$$\overline{J}^*(\boldsymbol{\delta}_0) \geq \overline{J}^*(\boldsymbol{\delta}_1) \geq \overline{J}^*(\boldsymbol{\delta}_2) \cdots$$





Algorithm IRA

- **1** Initialize with arbitrary risk allocation.
- 2 Loop

3

5

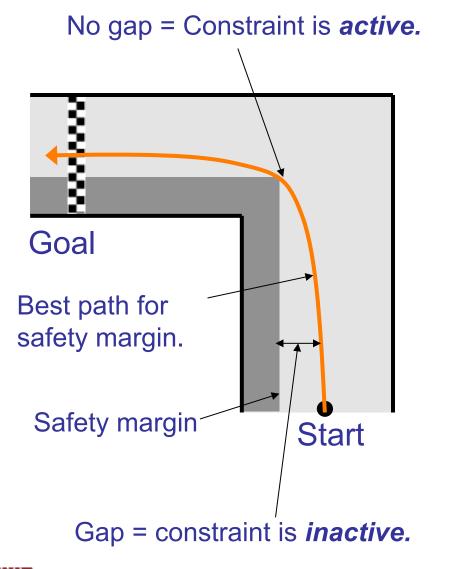
- Compute the best available path given the current risk allocation.
- 4 Decrease the risk where the constraint is inactive.
 - Increase the risk where the constraint is active.

6 End loop

<u>3</u>

4

5



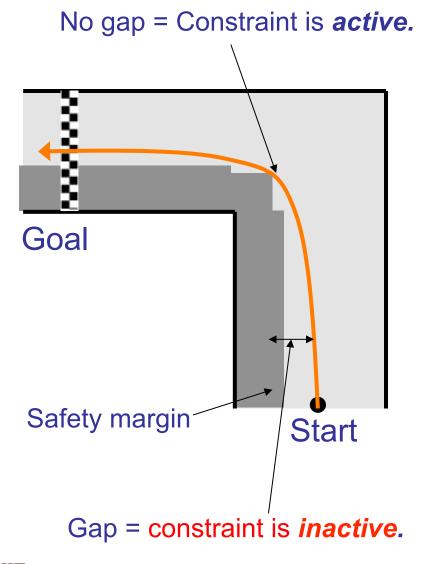
Algorithm IRA

- 1 Initialize with arbitrary risk allocation.
- 2 Loop
 - Compute the best available path given the current risk allocation.
 - Decrease the risk where the constraint is inactive.
 - Increase the risk where the constraint is active.

6 End loop

3

5



Algorithm IRA

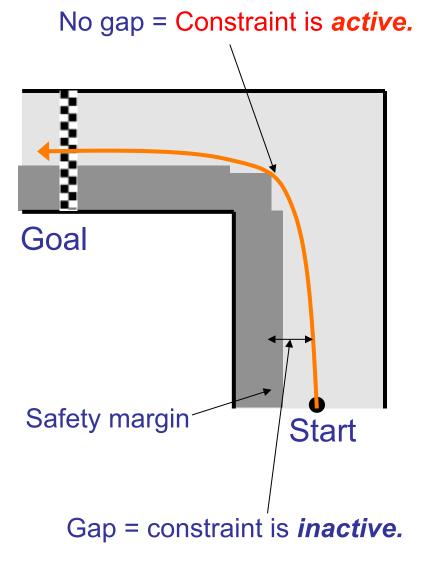
- 1 Initialize with arbitrary risk allocation.
- 2 Loop
 - Compute the best available path given the current risk allocation.
- <u>4</u> Decrease the risk where the constraint is inactive.
 - Increase the risk where the constraint is active.

6 End loop

3

4

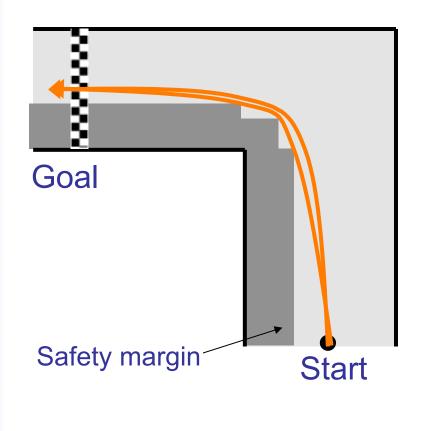
<u>5</u>



Algorithm IRA

- 1 Initialize with arbitrary risk allocation.
- 2 Loop
 - Compute the best available path given the current risk allocation.
 - Decrease the risk where the constraint is inactive.
 - Increase the risk where the constraint is active.

6 End loop



Algorithm IRA

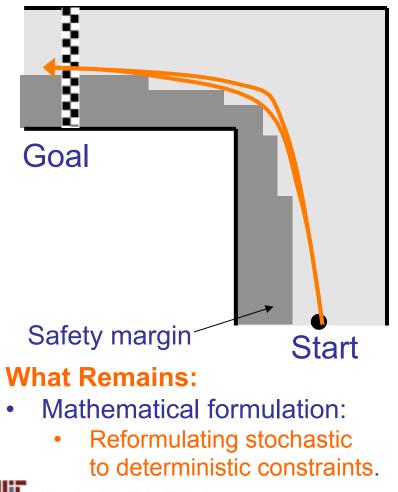
1 Initialize with arbitrary risk allocation.

2 Loop

<u>3</u>

- Compute the best available path given the current risk allocation.
- 4 Decrease the risk where the constraint is inactive.
- 5 Increase the risk where the constraint is active.

6 End loop



Algorithm IRA

- 1 Initialize with arbitrary risk allocation.
- 2 Loop

<u>3</u>

- Compute the best available path given the current risk allocation.
- 4 Decrease the risk where the constraint is inactive.
- 5 Increase the risk where the constraint is active.

6 End loop

ΞΛΞ

Comparison

• Approaches

- *Elliptic Approximation:* uses very conservative approximation of joint chance constraint.
- Sampling: approximates probability distribution by samples.
- Risk allocation results in near-optimal solution with significantly less computation time than sampling.

$\Delta = 0.1$				
	Risk allocation	Elliptical set conversion	Sampling	
Resulting probability of constraint violation	0.097	2.0×10^{-6}	0.0022	
Objective function value	3.15	5.26	3.76	
Computation time [sec]	3.38	1.76	1.41×10^4	

 $\Lambda = 0.1$

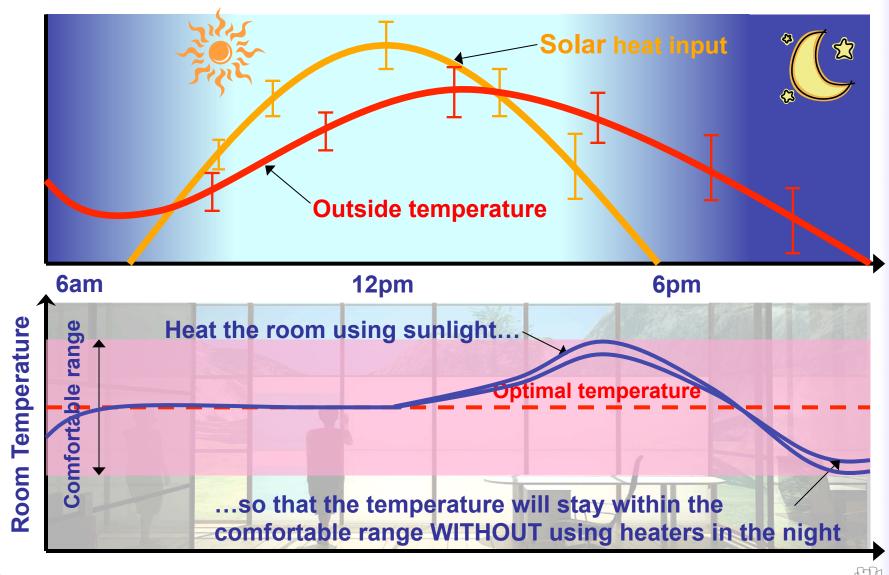
$$J = \sum_{t=1}^{T} \left\| x_t \right\|_2 \quad A = \begin{bmatrix} 1 & 1 \\ -0.5 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0.03 \end{bmatrix} \quad \Sigma_{x_0} = \begin{bmatrix} 0.0001 & 0 \\ 0 & 0.0001 \end{bmatrix} \quad \Sigma_w = \begin{bmatrix} 0.0001 & 0 \\ 0 & 0.0001 \end{bmatrix} \quad T = 20, \Delta = 0.1$$

Massachusetts Institute of Technology

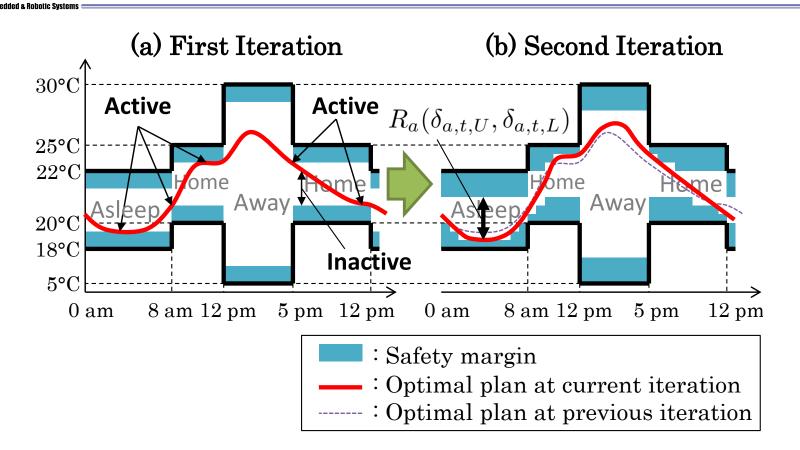
Test bed: Connected Sustainable Home F. Casalegno & B. Mitchell, MIT Mobile Experience Lab

- Goal: Optimally control HVAC, window opacity, washer/dryer, e-car.
- Objective: Minimize energy cost.
- Uncertainty: Solar input, outside temp, energy supply, occupancy.
- Risk: Resident goals not satisfied; occupant uncomfortable.

IRA-RMPC for Dynamic Window

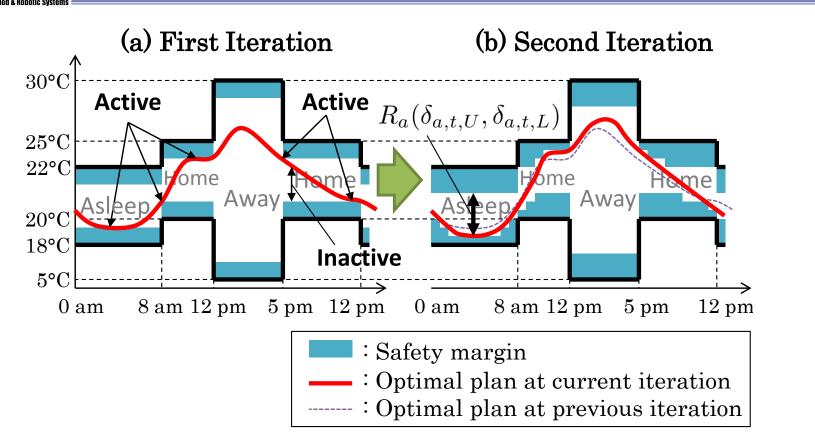


Successive Risk Allocations for IRA-RMPC



Takes risk of violating resident constraints where largest energy savings are possible.

Successive Risk Allocations for IRA-RMPC

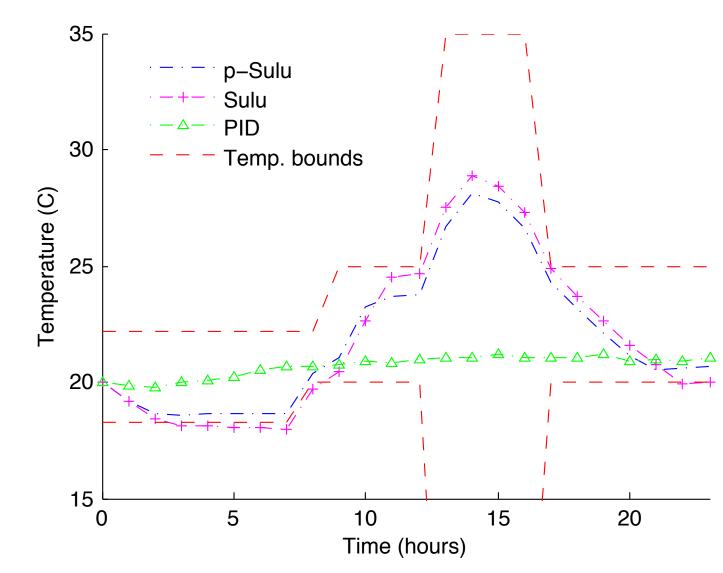


Given chance-constrained Qualitative State Plan (CC-QSP): 1. (Re-)allocates risk.

- 2. Reformulates to deterministic QSP and calls Sulu.
- 3. Repeats.

Massachusetts Institute of Technology

Results



Model-based Embedd

bedded & Robotic Systems

Improvement in Comfort

	Winter		Summer	
	Energy	Violation Rate	Energy	Violation Rate
p-Sulu	$1.9379 imes 10^4$	0.000	$3.4729 imes 10^4$	0
Sulu	1.6506×10^4	0.297	-	-
PID	$3.9783 imes 10^4$	0	4.1731×10^{4}	0
	Spring			
	Sr	oring	Au	tumn
	Sp Energy	oring Violation Rate	Energy	tumn Violation Rate
p-Sulu				
p-Sulu Sulu	Energy	Violation Rate	Energy	Violation Rate

- Deterministic control (Sulu): 30% comfort violations.
- Robust control (p-Sulu): near 0% violations.

e Robotic Syste

Outline

- Goal-directed, Model-Predictive Control
- Stochastic Optimization
- Iterative Risk Allocation
- Optimal Risk Allocation
 - Stochastic Linear Programs
 - Disjunctive Linear Programs
 - Probabilistic Sulu
- Appendix: Multi-agent Risk Allocation

Finding Optimal Risk Allocations

Given that the Boole's inequality approximation has been performed.

Idea:

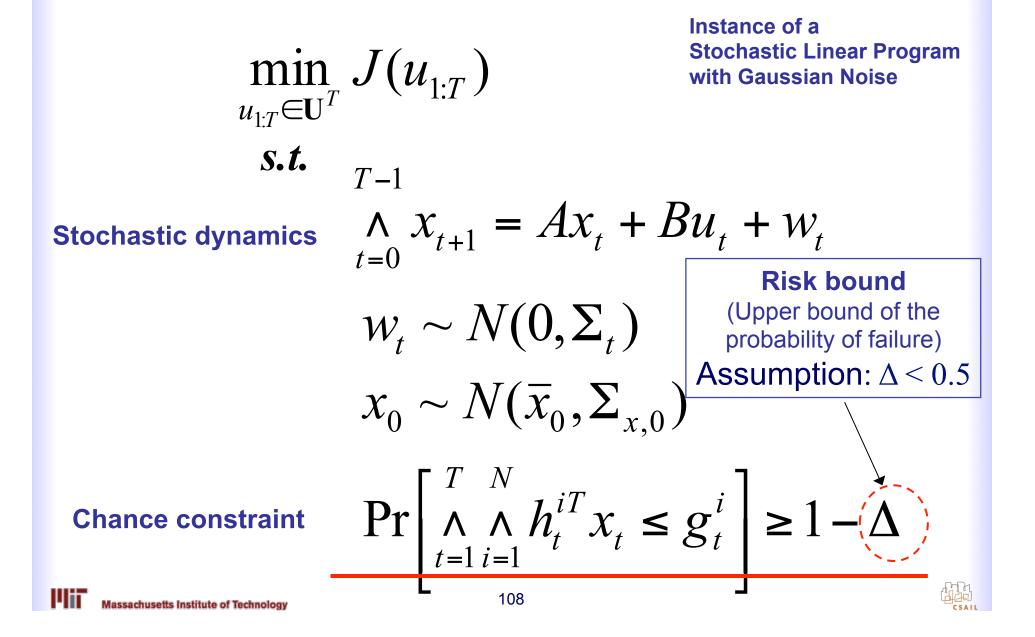
- 1. Formulate optimal risk allocation as a stochastic program.
- 2. Map to deterministic (non-)convex program, with risk and control variables as decision variables.
- 3. Solve exactly using deterministic solver.

Problems Fixed schedule *t* = 5 **Fixed schedule** Mode t = 3t=5t = 5Goal Goal =t = 1Waypoint Waypoint Start Start Convex, multi-agent **Convex, single agent** Simple temporal —> [2 4] Fixed schedule constraints t = 5[13] С Goal С **↑** Goal *t* = **Obstacle** Obstacle Waypoint Waypoint [0 5] Start Start

Illii Mon-convex, single agent

Non-convex, flexible schedule, single agent

Chance-Constrained FH Optimal Control



Conversion of Joint Chance Constraint

Joint chance constraint

$$\Pr\left[\bigwedge_{t=0}^{T}\bigwedge_{i=0}^{N}h_{t}^{iT}x_{t} \leq g_{t}^{i}\right] \geq 1 - \Delta$$

Intractable

- Requires computation of complex integral over multivariate Gaussian.

A set of individual chance constraints.

- Each involves one hard constraint, over a univariate Gaussian distribution.

A set of deterministic state constraints.

Decomposition of Joint Chance Constraint

Joint chance constraint

edded & Robotic Syste

 $\Pr\left[\bigwedge_{t=0}^{T} \bigwedge_{i=0}^{N} h_{t}^{iT} x_{t} \le g_{t}^{i}\right] \ge 1 - \Delta$

Use Boole's inequality (union bound)

 $\Pr[A \cup B] \le \Pr[A] + \Pr[B]$

Decomposition of Joint Chance Constraint

Joint chance constraint

edded & Robotic Syste

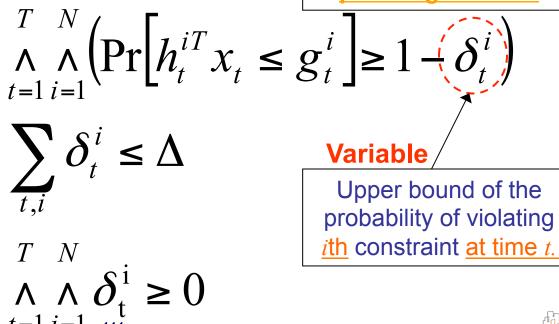
$$\Pr\left[\bigwedge_{t=0}^{T} \bigwedge_{i=0}^{N} h_{t}^{iT} x_{t} \le g_{t}^{i}\right] \ge 1 - \Delta$$

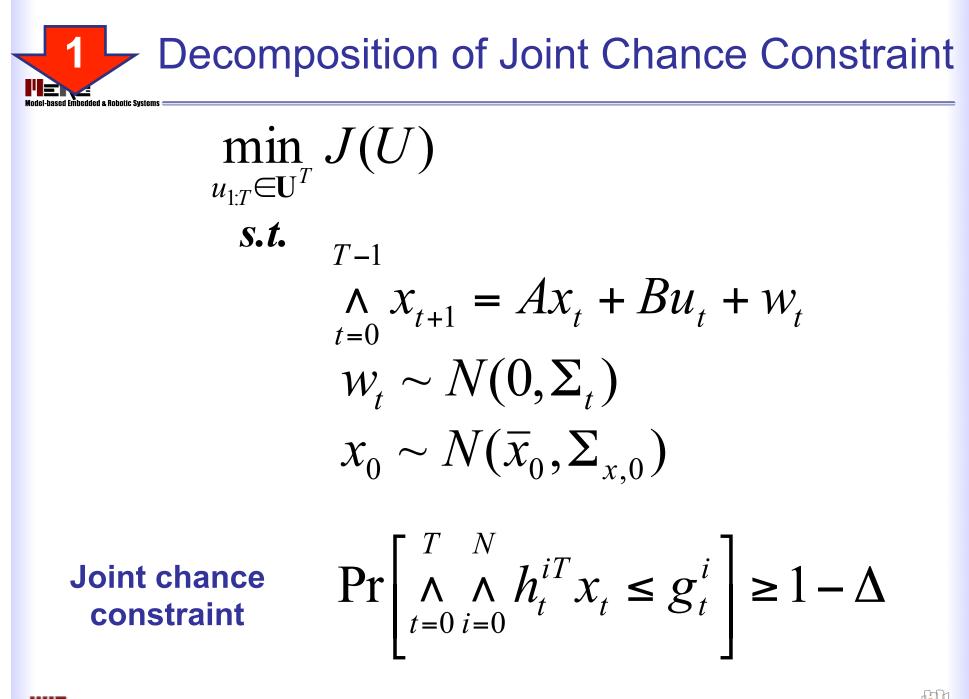
is implied by:

Upper bound of the probability of violating any constraint over the planning horizon.

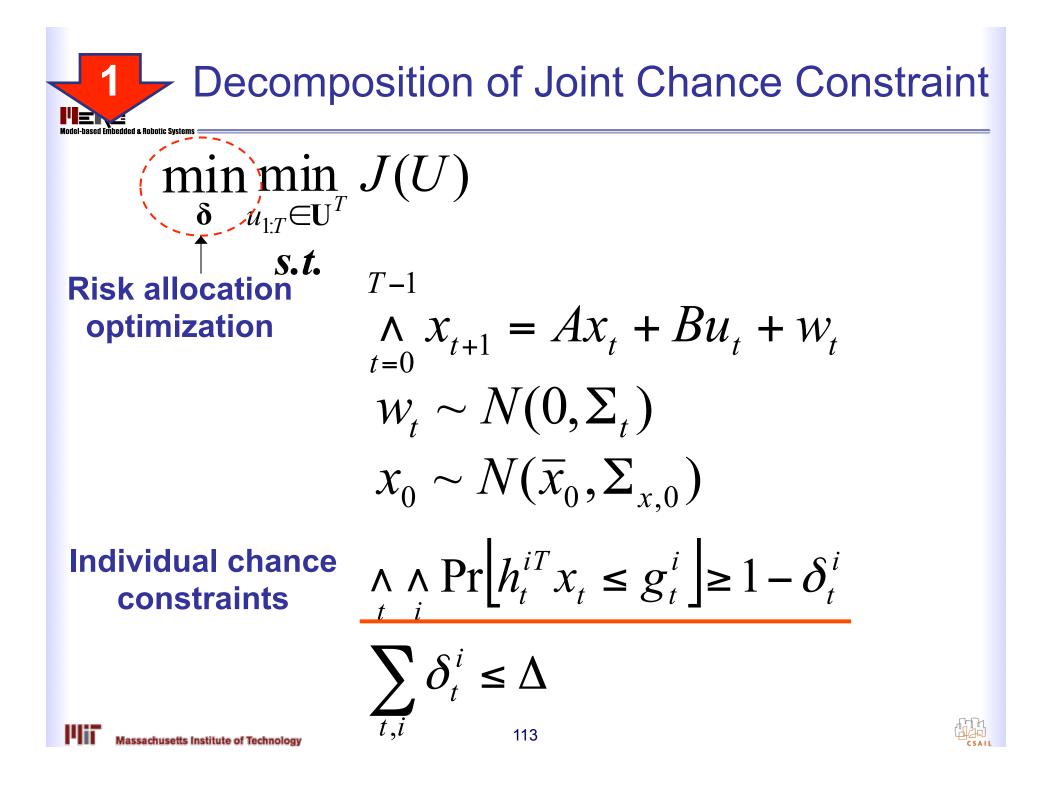
Individual chance constraints

Risk allocation: $\boldsymbol{\delta} = \left[\delta_1^1, \delta_1^2 \cdots \delta_T^N \right]$





Massachusetts Institute of Technology

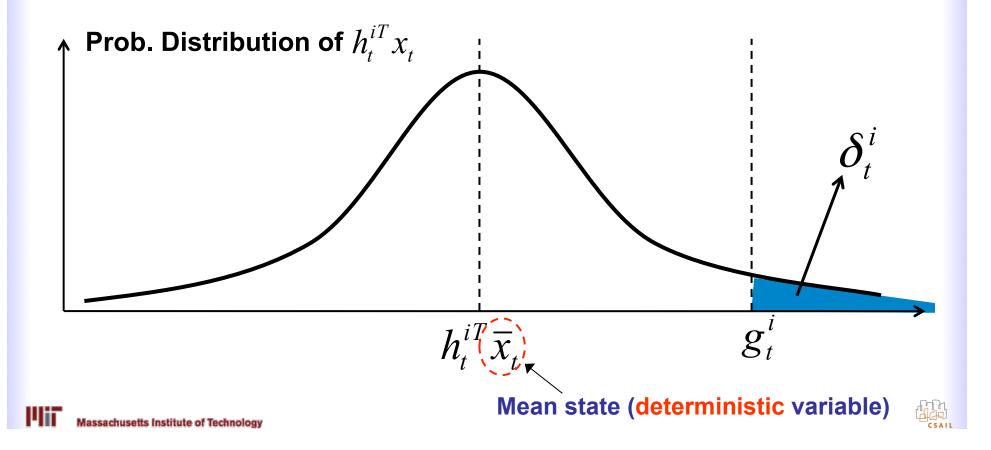


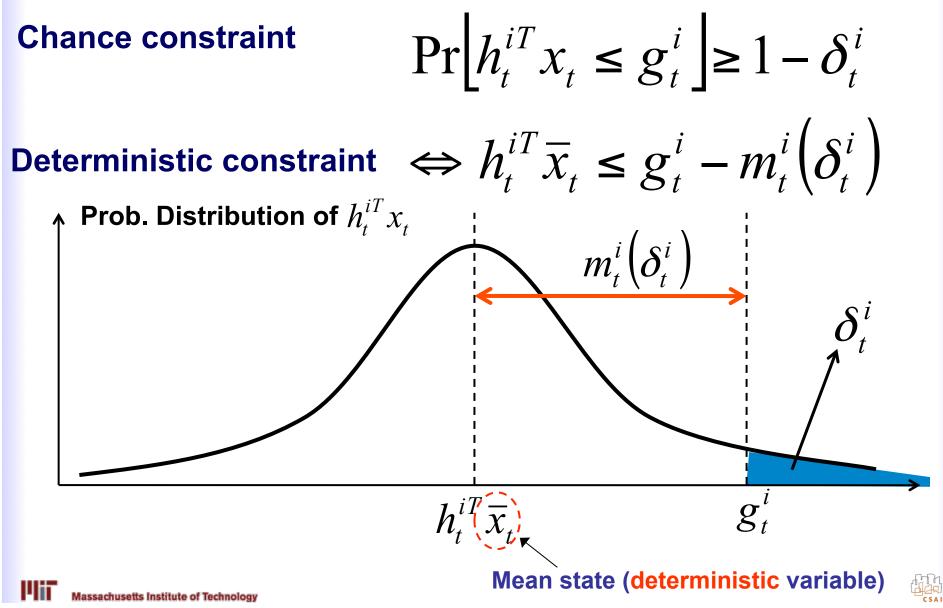
Conversion to Deterministic Constraint

Chance constraint

$$\Pr[h_t^{iT} x_t] \le g_t^i] \ge 1 - \delta_t^i$$

Univariate Gaussian distribution





Chance constraint

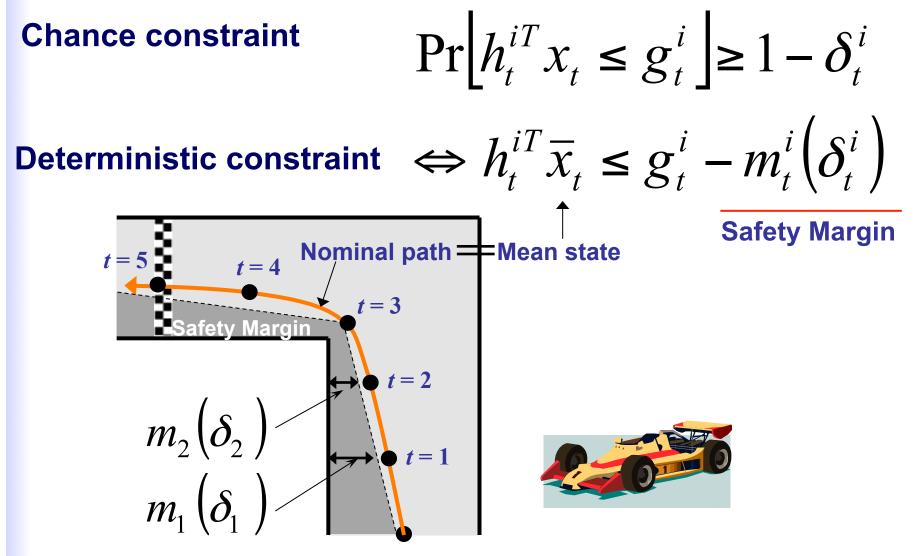
Deterministic constraint

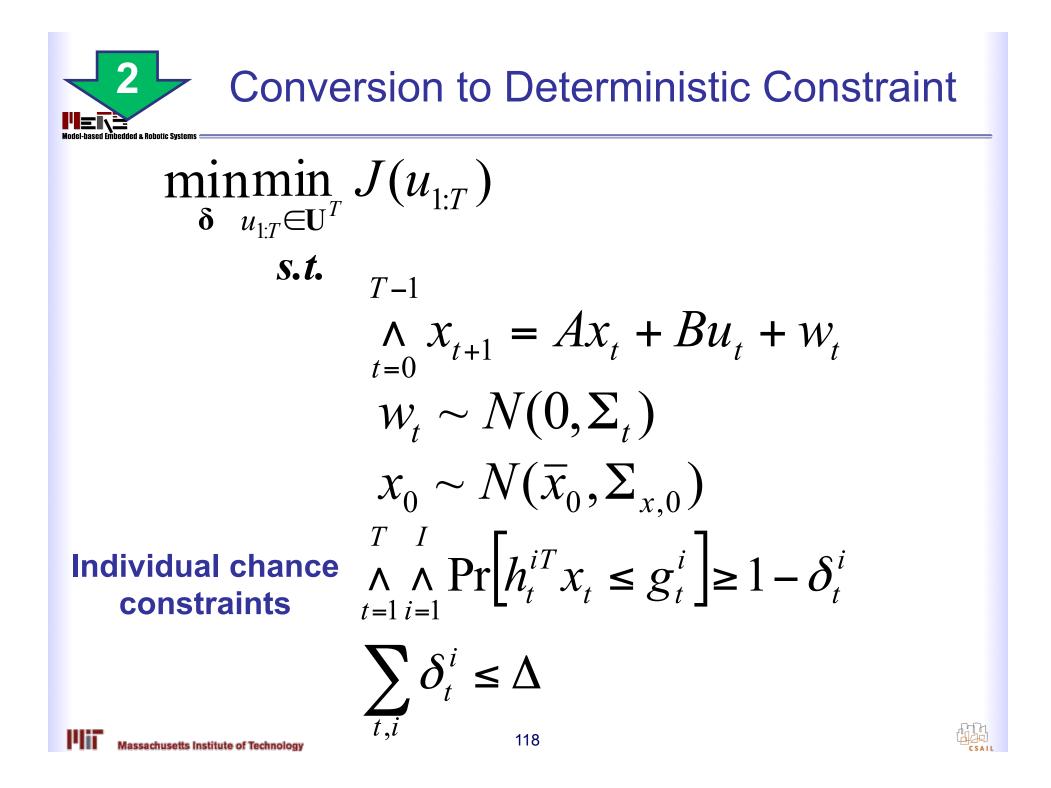
$$\Pr[h_t^{iT} x_t \le g_t^i] \ge 1 - \delta_t^i$$
$$\iff h_t^{iT} \overline{x}_t \le g_t^i - m_t^i \left(\delta_t^i\right)$$

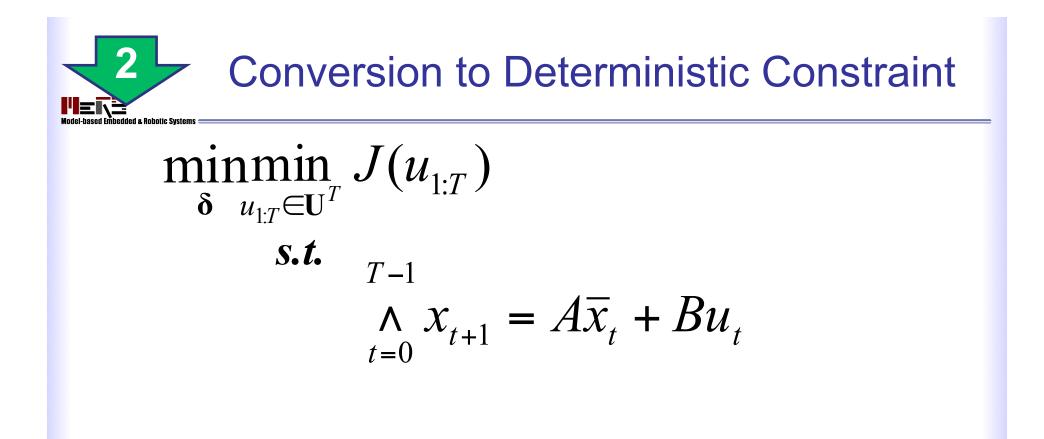
where

$$m_t^i(\delta_t^i) = -\sqrt{2h_t^{iT}\Sigma_{x,t}h_t^i} \operatorname{erf}^{-1}(2\delta_t^i - 1)$$

(Inverse of cdf of Gaussian)
 $x_t \sim N(\overline{x}_t, \Sigma_{x,t})$
 $\Sigma_{x,t} = \sum_{n=0}^{t-1} A^n \Sigma_w (A^n)^T + \Sigma_{x,0}$

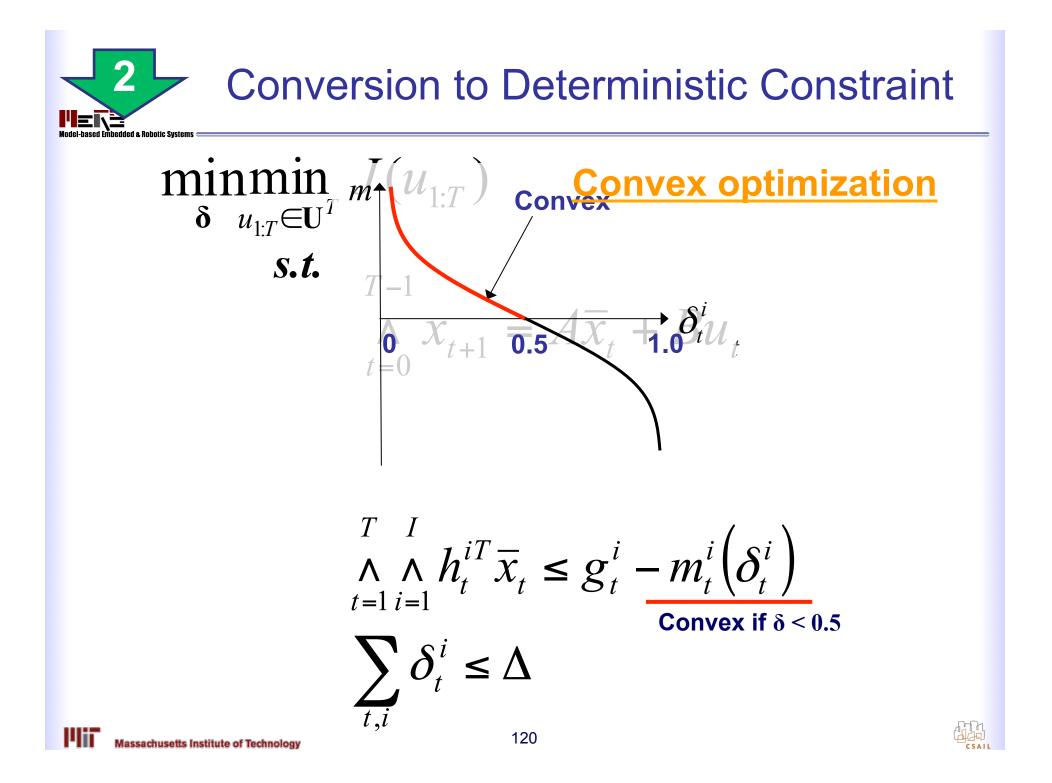






$$\sum_{t=1}^{T} \bigwedge_{i=1}^{I} h_t^{iT} \overline{x}_t \leq g_t^i - m_t^i \left(\delta_t^i\right)$$
$$\sum_{t,i} \delta_t^i \leq \Delta$$

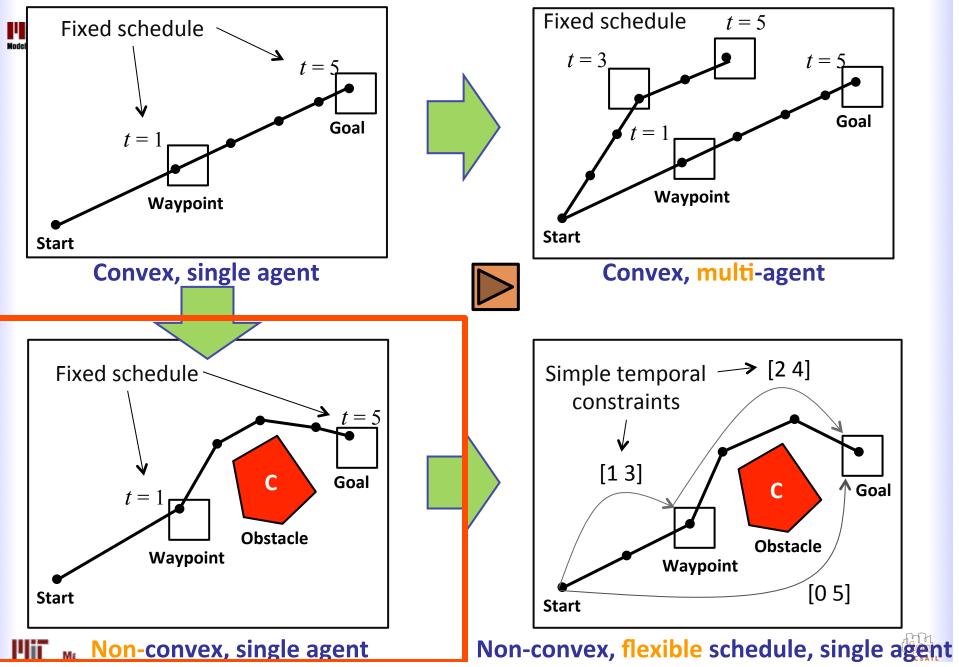
llii

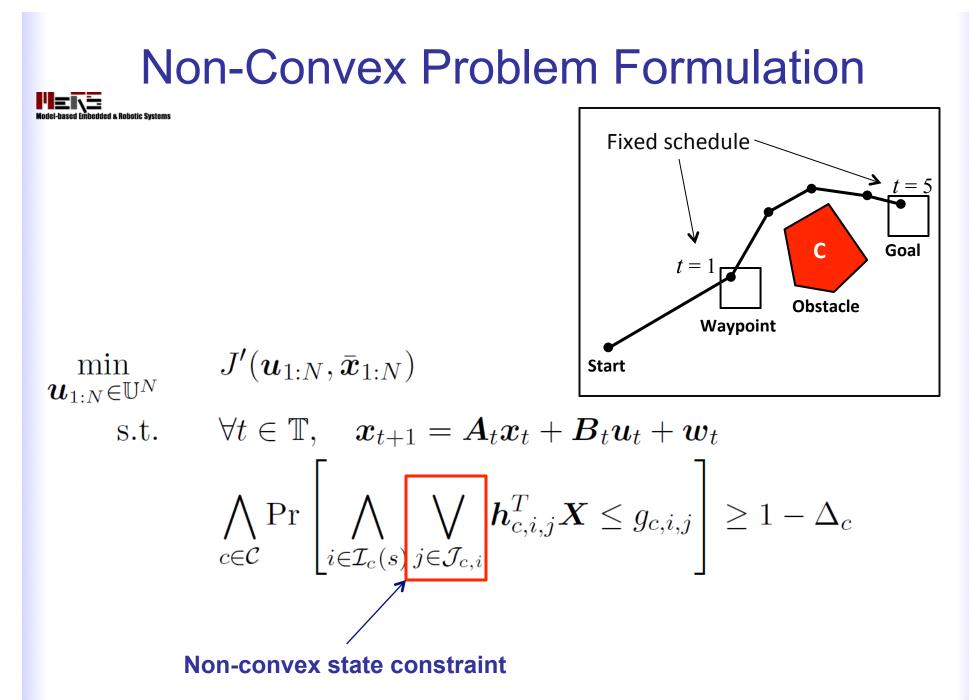


Outline

- Goal-directed, Model-Predictive Control
- Stochastic Optimization
- Iterative Risk Allocation
- Optimal Risk Allocation
 - Stochastic Linear Programs
 - Disjunctive Linear Programs
 - Probabilistic Sulu
- Multi-agent Risk Allocation

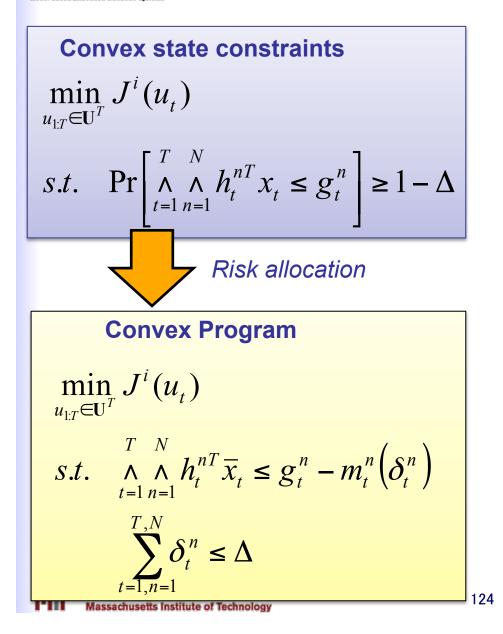
Problems





Problem Formulation: Non-Convex Chance Constraint

Model-based Embedded & Robotic Systems



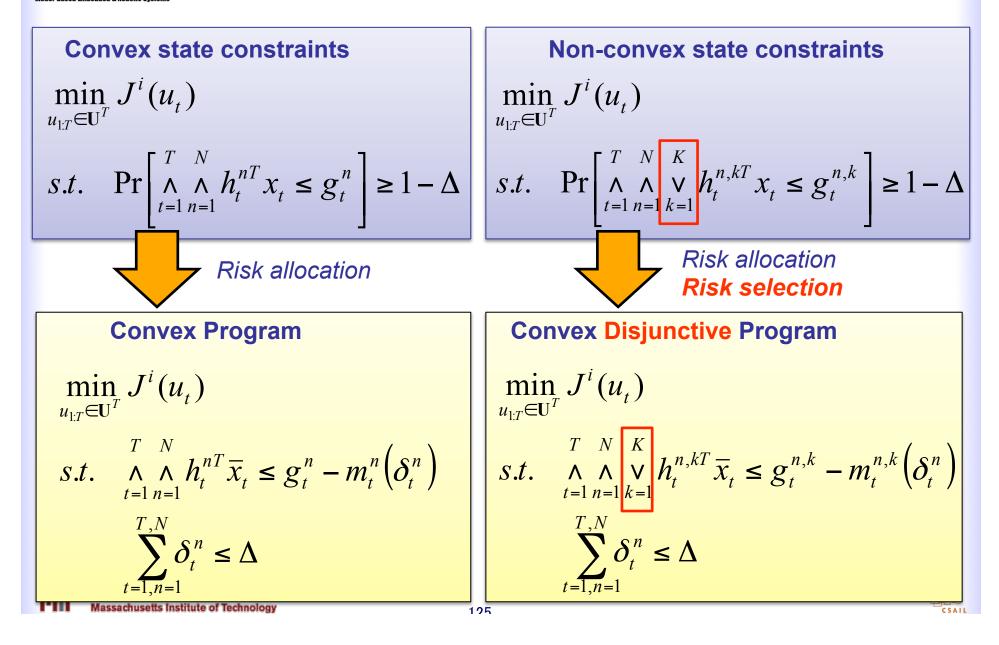
A joint chance constraints

A set of individual chance constraints

A set of deterministic state constraints

Problem Formulation: Non-Convex Chance Constraint

Model-based Embedded & Robotic Systems



Decomposition Through Risk Selection

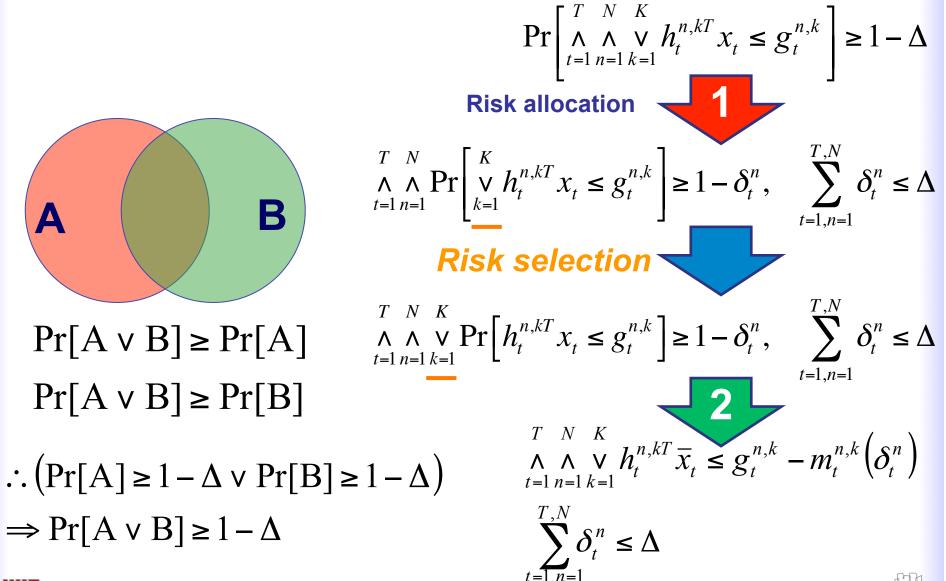
$$\Pr\left[\bigwedge_{t=1}^{T} \bigwedge_{n=1}^{N} \bigvee_{k=1}^{K} h_{t}^{n,kT} x_{t} \leq g_{t}^{n,k}\right] \geq 1 - \Delta$$

$$\sum_{t=1,n=1}^{T} \sum_{k=1}^{N} h_t^{n,kT} \overline{x}_t \leq g_t^{n,k} - m_t^{n,k} \left(\delta_t^n \right)$$

$$\sum_{t=1,n=1}^{T,N} \delta_t^n \leq \Delta$$

Massachusetts Institute of Technology

Decomposition Through Risk Selection



Massachusetts Institute of Technology

Solution: Branch and Bound for a Convex Disjunctive Program

d & Robotic Systems

$$\sum_{t=1}^{T} \sum_{n=1}^{N} \sum_{k=1}^{K} h_{t}^{n,kT} \overline{x}_{t} \leq g_{t}^{n,k} - m_{t}^{n,k} \left(\delta_{t}^{n} \right)$$

$$= \left(C_{11} \vee C_{12} \right) \wedge \left(C_{21} \vee C_{22} \right)$$

128

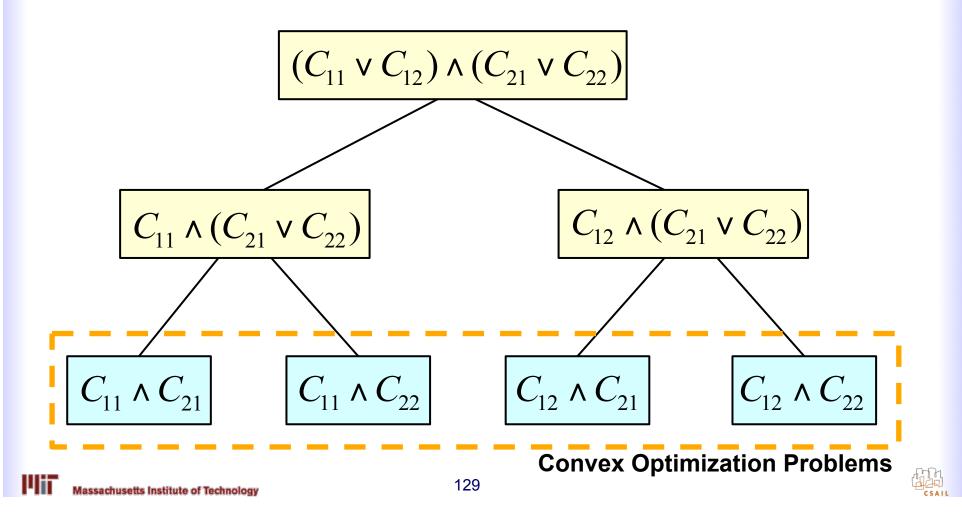
$$T = 2, N = 1, K = 2; \quad C_{tk} = \left\{ h_t^{1,kT} \bar{x}_t \le g_t^{1,k} - m_t^{1,k} \left(\delta_t^n \right) \right\}$$

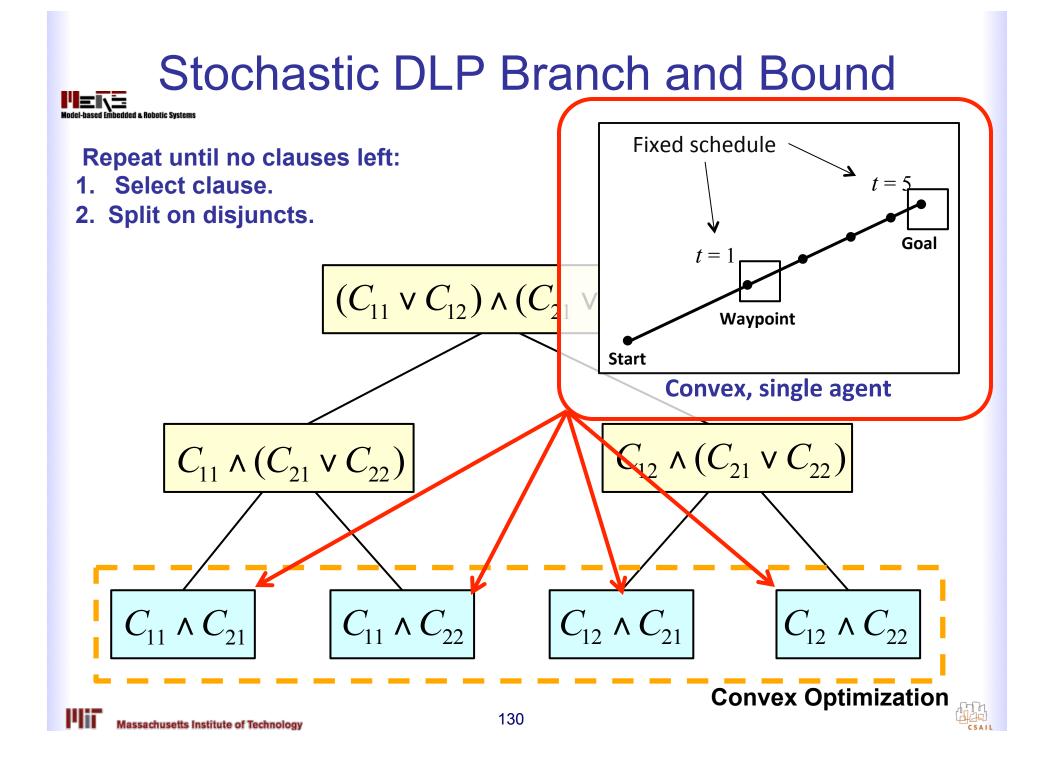
$$\begin{array}{l} \underset{u_{1:T} \in \mathbf{U}^{T}}{\min} \ J^{i}(u_{t}) \\ s.t. \quad \bigwedge_{t=1}^{T} \bigwedge_{n=1}^{N} \bigwedge_{k=1}^{K} h_{t}^{n,kT} \overline{x}_{t} \leq g_{t}^{n,k} - m_{t}^{n,k} \left(\delta_{t}^{n}\right) \\ & \sum_{t=1,n=1}^{T,N} \delta_{t}^{n} \leq \Delta \end{array}$$

Stochastic DLP Branch and Bound

Repeat until no clauses left:

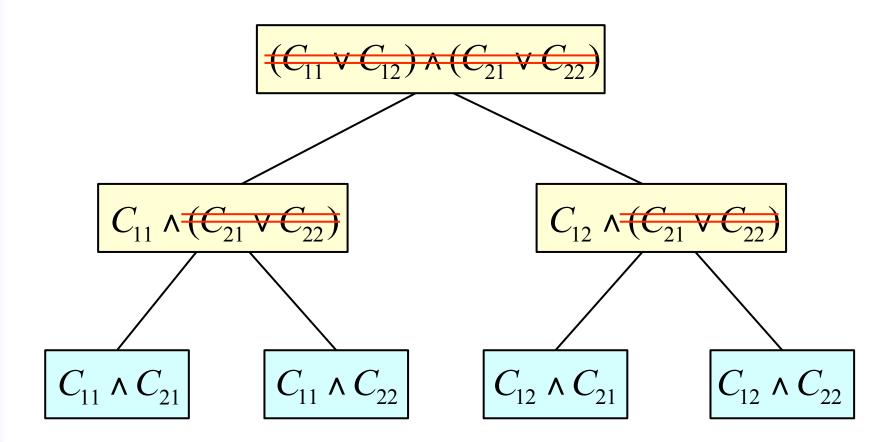
- 1. Select clause.
- 2. Split on disjuncts.





Bound Through Convex Relaxation

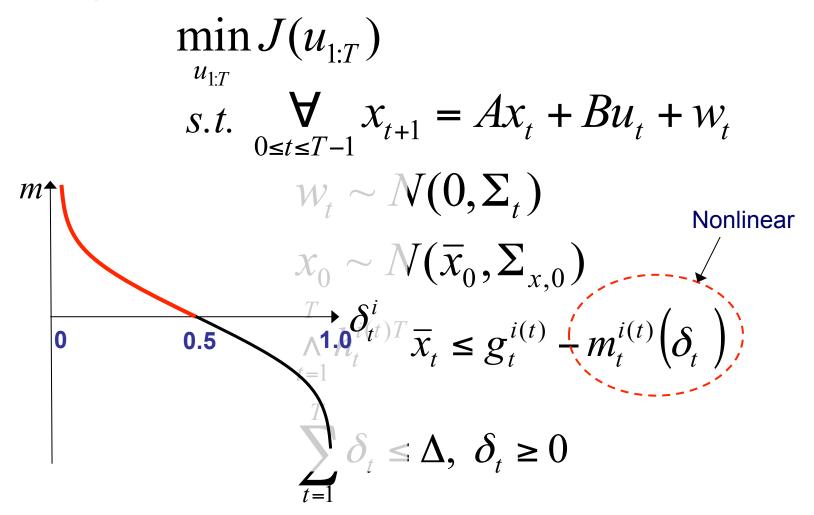
- Bound: Remove all disjunctive clauses [Li & Williams 2005].
- Issue: Computing bound is slow!!
- Cause: Sub-problems include non-linear constraints.



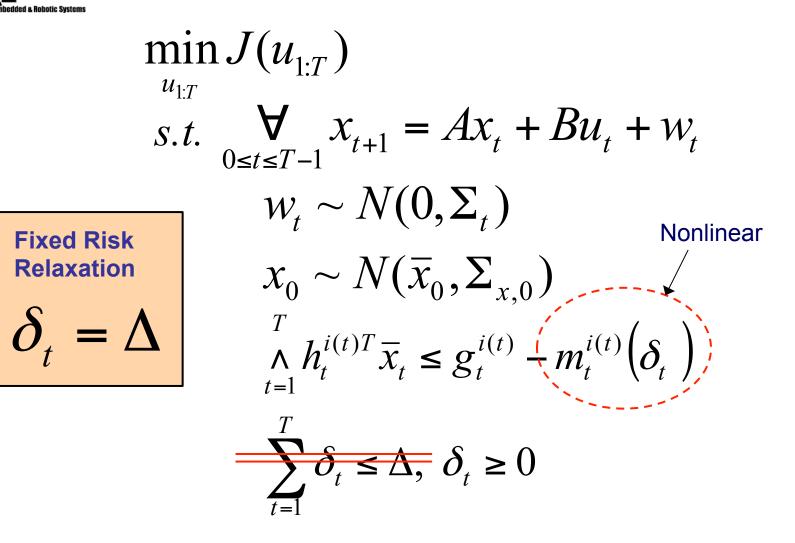
Model-based Embedde

edded & Robotic Systems

Subproblems of BnB (non-linear)



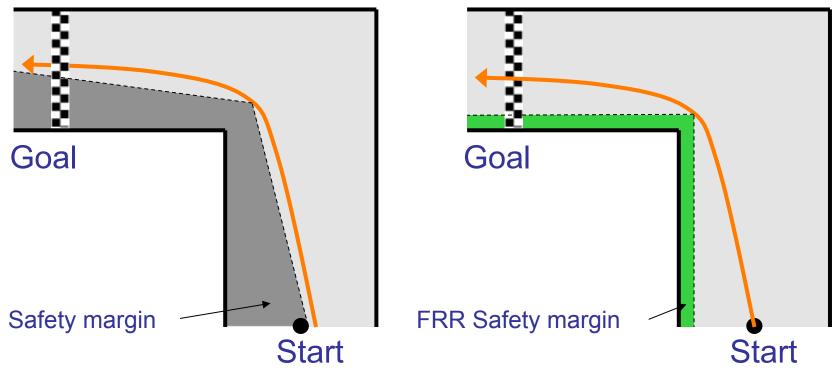
Subproblems of BnB (non-linear)



Fixed Risk Relaxation: Intuition

Original problem

FRR Sets safety margin for all constraints to max risk Δ .



- Results in an infeasible solution to the original problem.
- Gives lower bound for the cost of the original problem.

Approach: *Fixed Risk Relaxation* (FRR)

- **FRR**: linear relaxation of each subproblem.
 - Has only linear constraints (typically LP / QP).
 - Gives lower bound on the cost of sub-problem.
 - May generate infeasible solution to original problem.

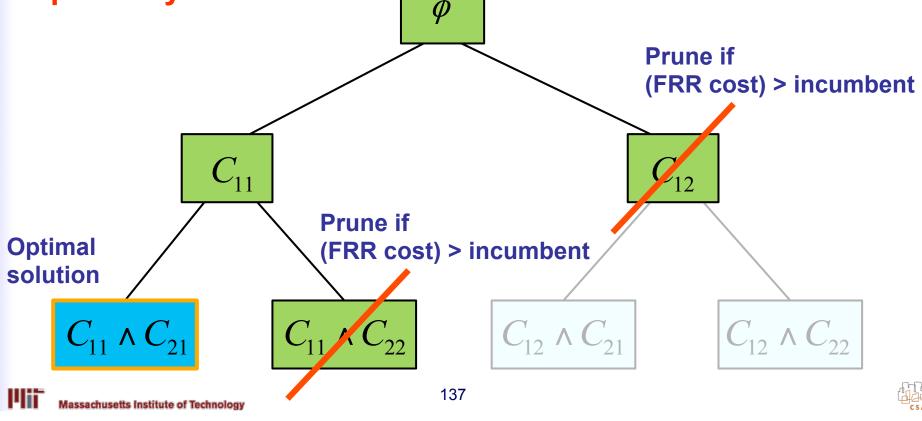
Fixed Risk Relaxation (Linear) $\min J(u_{1,T})$ $u_{1:T}$ s.t. $\bigvee_{0 \le t \le T-1} x_{t+1} = Ax_t + Bu_t + w_t$ $W_t \sim N(0, \Sigma_t)$ **Fixed Risk** Constant $x_{0} \sim N(\overline{x}_{0}, \Sigma_{x,0})$ $\bigwedge_{t=1}^{T} h_{t}^{i(t)T} \overline{x}_{t} \leq g_{t}^{i(t)} + m_{t}^{i(t)}(\Delta)$ Relaxation $\delta_t = \Delta$

•All constraints are linear (FRR is typically LP or QP).

Algorithm: BnB + FRRs

Solve FRRs of subproblems to reduce computation time.

- Solve subproblem *without relaxation* at unpruned leaf nodes to obtain exact solution.
- Significantly reduces computation time without compromising optimality.

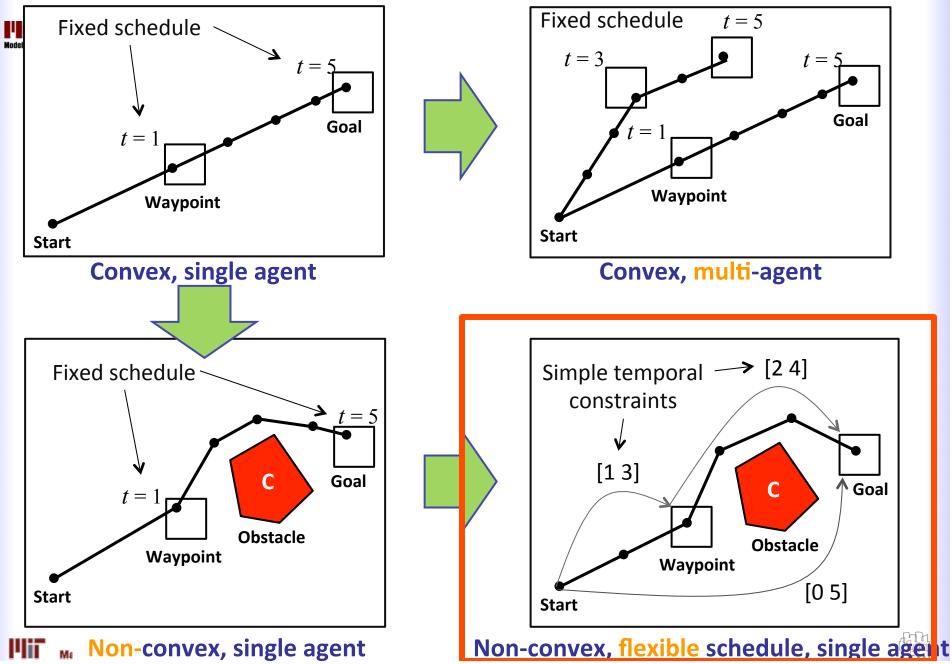


Outline

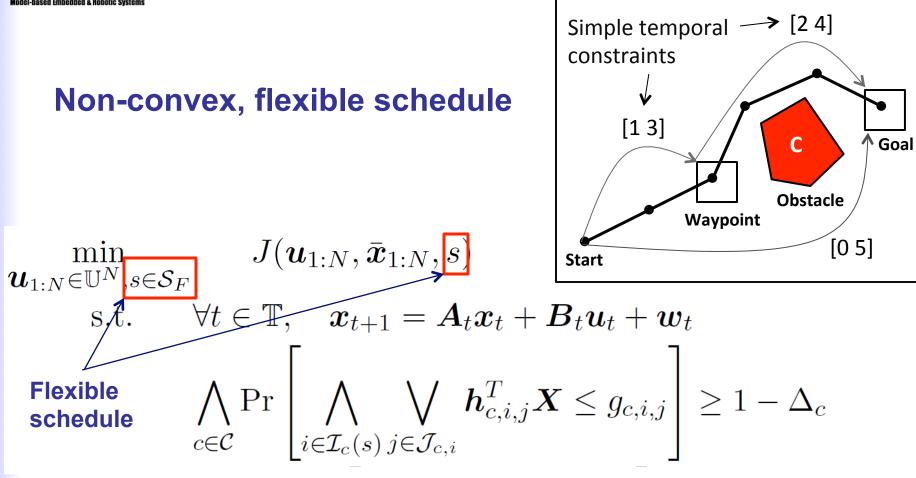
- Goal-directed, Model-Predictive Control
- Stochastic Optimization
- Iterative Risk Allocation
- Optimal Risk Allocation
 - Stochastic Linear Programs
 - Disjunctive Linear Programs
 - Probabilistic Sulu
- Appendix: Multi-agent Risk Allocation

led & Robotic Systems

Problems



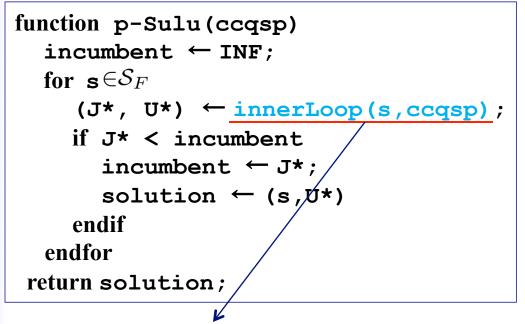
Problem Formulation



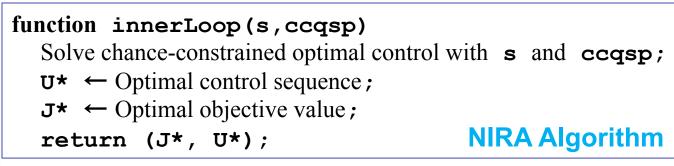
Two-layer Approach

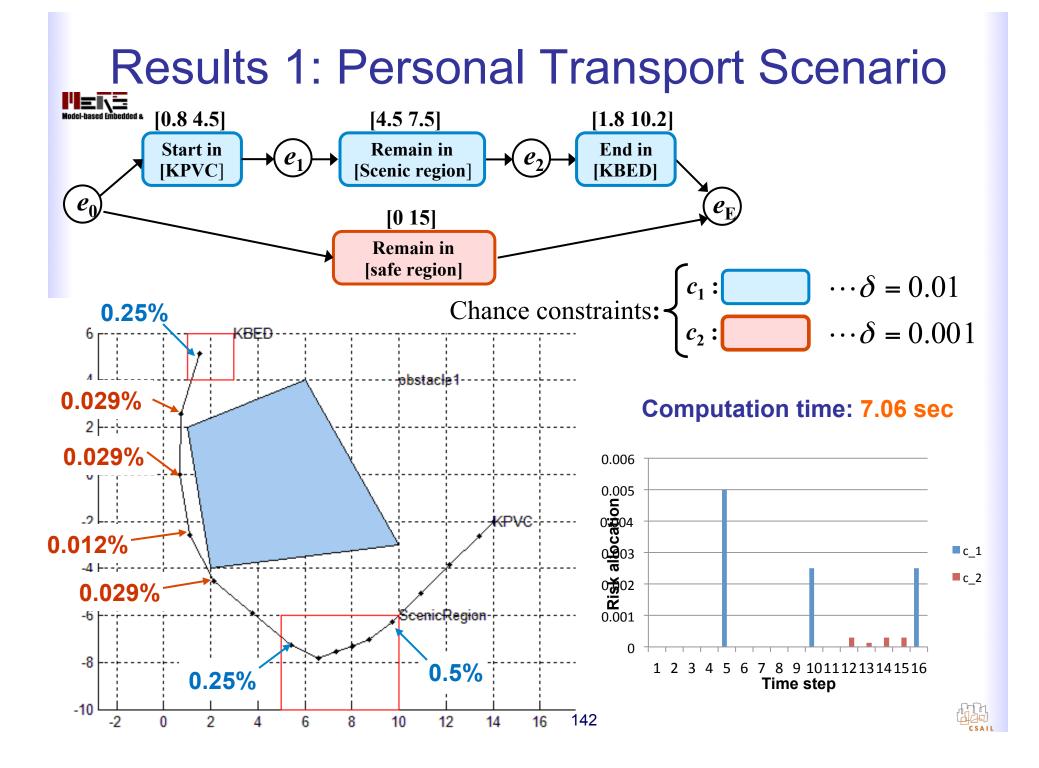
Model-based Embedded & Robotic Systems

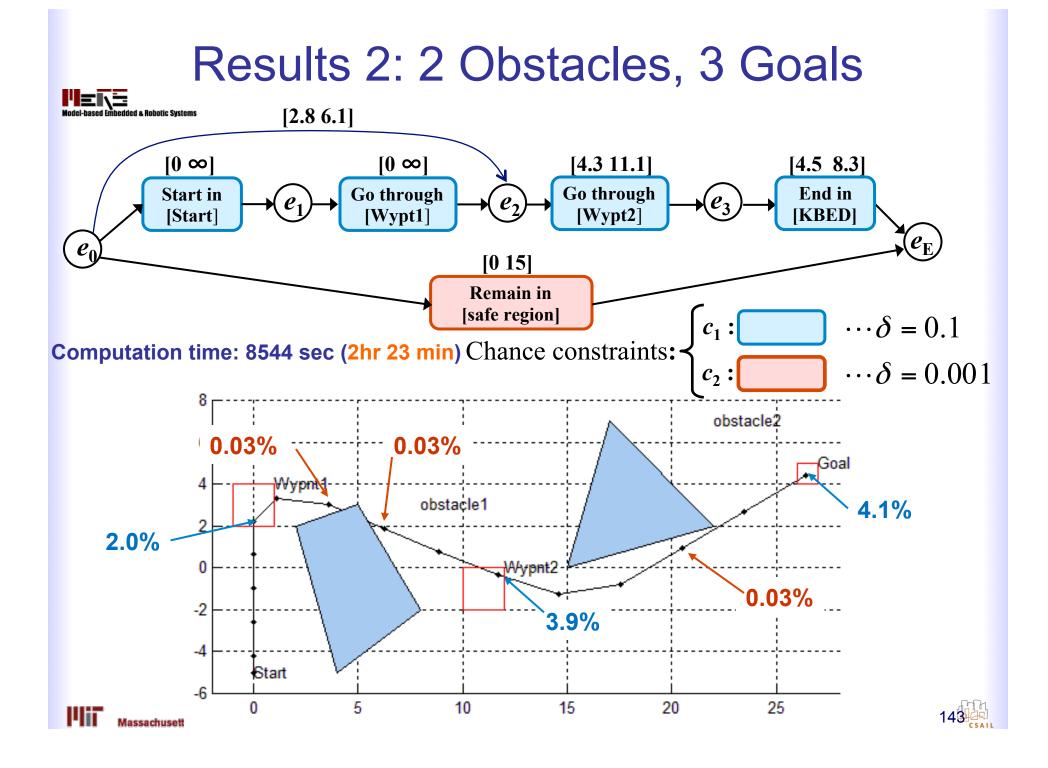
Outer-loop: Schedule optimization



Inner-loop: fixed schedule CC-QSP as a Stochastic-DLP



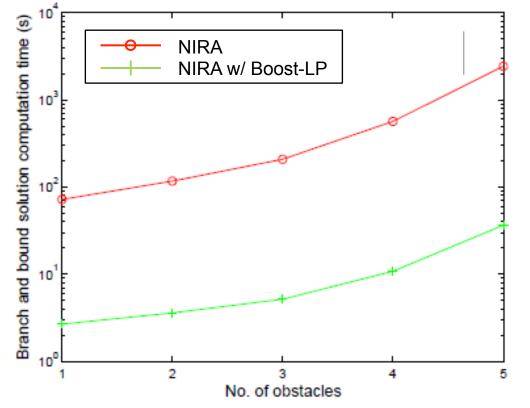




Performance Improvement Using Boosting Tree-based Regression

Scenario #	1	2	3	4
NIRA	135.21	219.76	79.99	80.15
NIRA w/ Boost-LP	3.84	4.15	3.03	2.93

•Both algorithms always result in the same solution



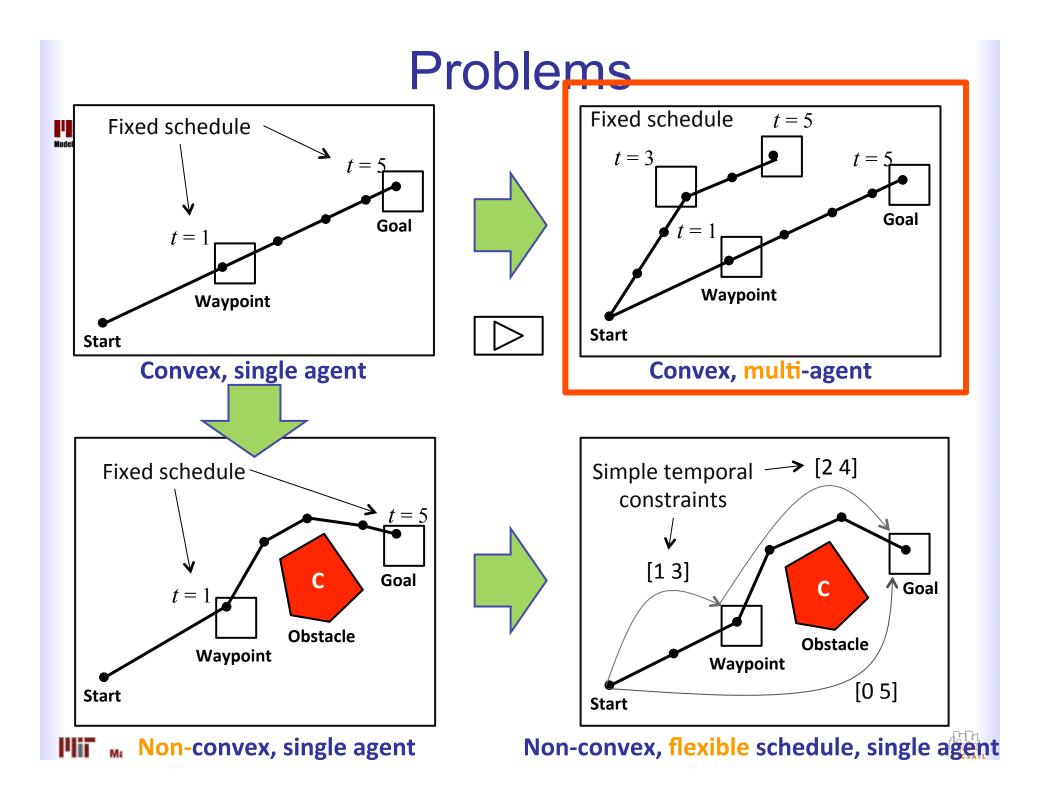
T=20, ⊿=0.01

Scenaros:

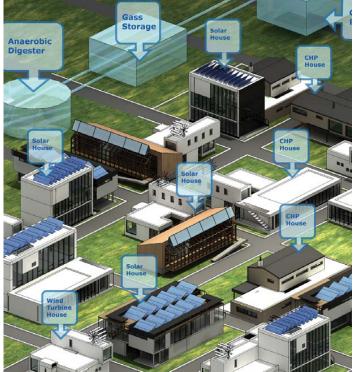
- #1: 2 obstacles and no waypoint
- #2: 2 obstacles and 2 waypoints
- #3: 1 obstacle and 1 waypoint, trained with different disturbance level
- #4: 1 obstacle with 1 waypoint, trained with different control constraints

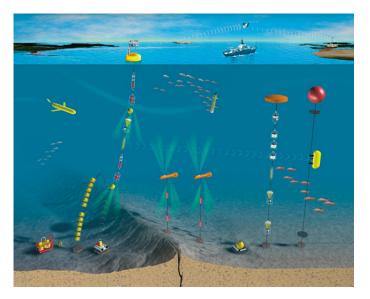
* Banerjee, A. G., & Roy, N. (2010). Learning Solutions of Similar Linear Programming Problems using Boosting Trees. CSAIL technical report MIT-CSAIL-TR-2010-045

P-Sulu Performing Rendezvous and Docking on Spheres



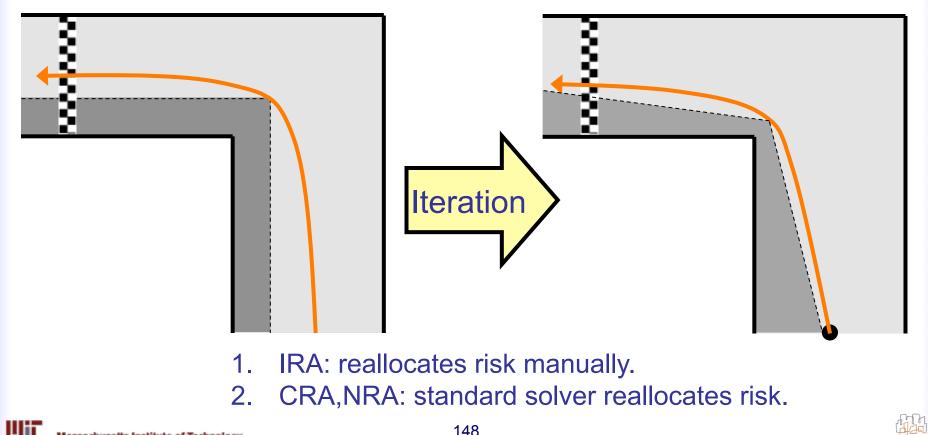
Facilitating Sustainability Requires Managing Risk





Risk Allocation

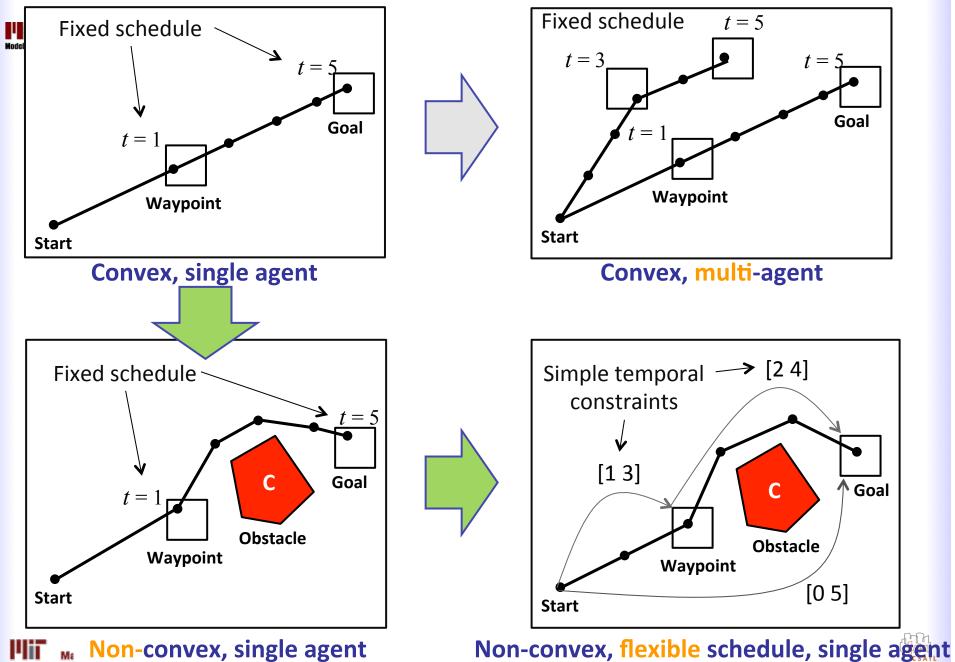
$$\overline{J}^*(\boldsymbol{\delta}_0) \geq \overline{J}^*(\boldsymbol{\delta}_1) \geq \overline{J}^*(\boldsymbol{\delta}_2) \cdots$$



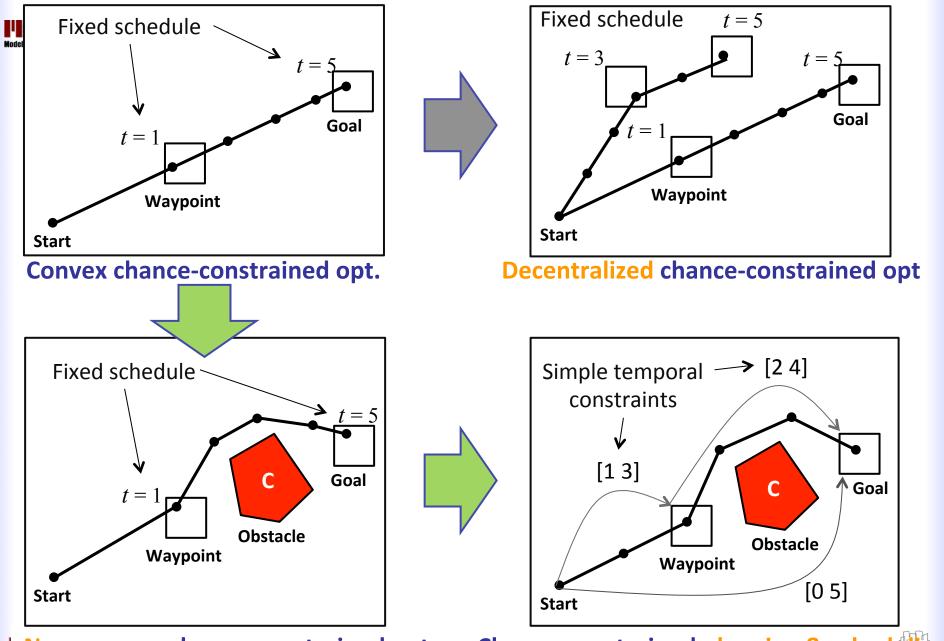
liii Massachusetts Institute of Technology

CSAI

Risk-bounded Planning



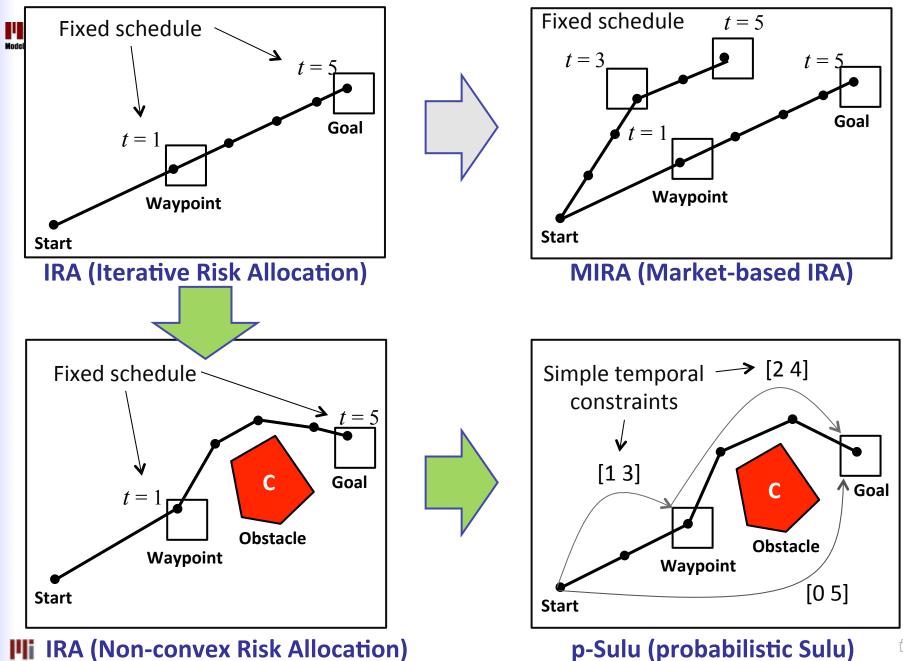
Optimization Problems



Non-convex, chance-constrained opt

Chance-constrained planning & scheduling

Risk Allocation Algorithms



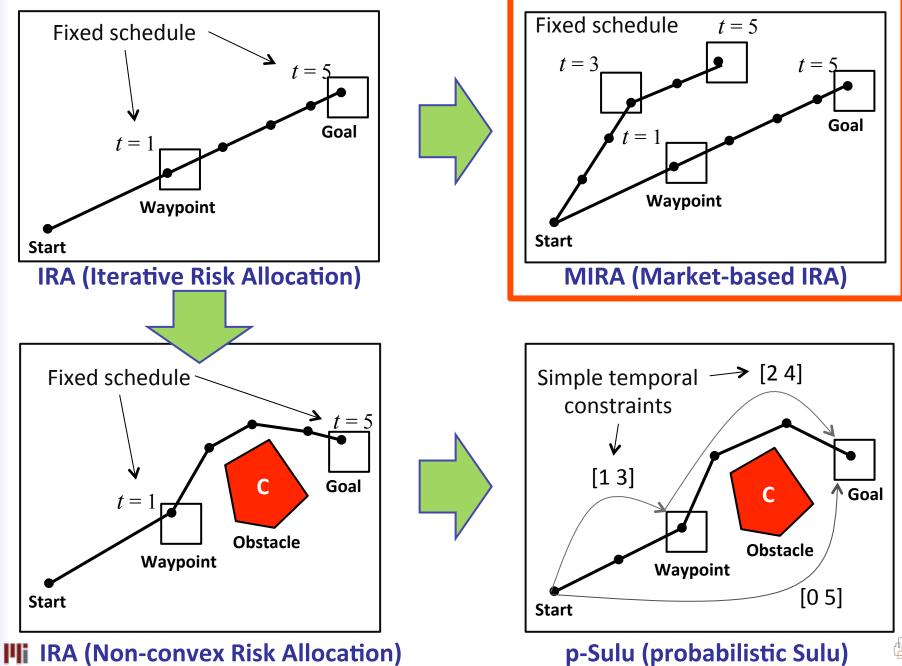
III IRA (Non-convex Risk Allocation)

Outline

- Model-Predictive Control
- Stochastic Optimization
- Iterative Risk Allocation
- Optimal Risk Allocation
- Appendix: Multi-agent Risk Allocation

e Robotic Syst

Algorithms



Problem Formulation for Multi-agent

Single agent $\min_{U \in \mathbf{U}} J(U)$ s.t. $\Pr\left[\bigwedge_{n=1}^{N} h_n^T X \le g_n^i\right] \ge 1 - \Delta$

$$\begin{array}{l} \underset{U^{1:I} \in \mathbf{U}^{1:I}}{\min} \sum_{i=1}^{I} J^{i}(U^{i}) \\
S.t. \quad \Pr\left[\bigwedge_{i=1}^{I} \bigwedge_{n=1}^{N_{i}} h_{n}^{iT} X^{i} \leq g_{n}^{i}\right] \geq 1 - \Delta
\end{array}$$

i: Index of agents *I* agents, N^i state constraints for *i* 'th agent

$$X^{i} = \begin{pmatrix} x_{1}^{i} \\ \vdots \\ x_{T}^{i} \end{pmatrix} \quad U^{i} = \begin{pmatrix} u_{1}^{i} \\ \vdots \\ u_{T}^{i} \end{pmatrix}$$

Problem Formulation for Multi-agent

Single agent $\min_{U \in \mathbf{U}} J(U)$ s.t. $\Pr\left[\bigwedge_{n=1}^{N} h_n^T X \le g_n\right] \ge 1 - \Delta$

$$\begin{array}{l} \underset{U^{1:I} \in \mathbf{U}^{1:I}}{\min} \sum_{i=1}^{I} J^{i}(U^{i}) \\
s.t. \quad \Pr\left[\bigwedge_{i=1}^{I} \bigwedge_{n=1}^{N_{i}} h_{n}^{iT} X^{i} \leq g_{n}^{i} \right] \geq 1 - \Delta
\end{array}$$

- *i*: Index of agents I agents, N^i state constraints for *i* 'th agent
- Minimize aggregate cost

$$X^{i} \equiv \begin{pmatrix} x_{1}^{i} \\ \vdots \\ x_{T}^{i} \end{pmatrix} \quad U^{i} \equiv \begin{pmatrix} u_{1}^{i} \\ \vdots \\ u_{T}^{i} \end{pmatrix}$$

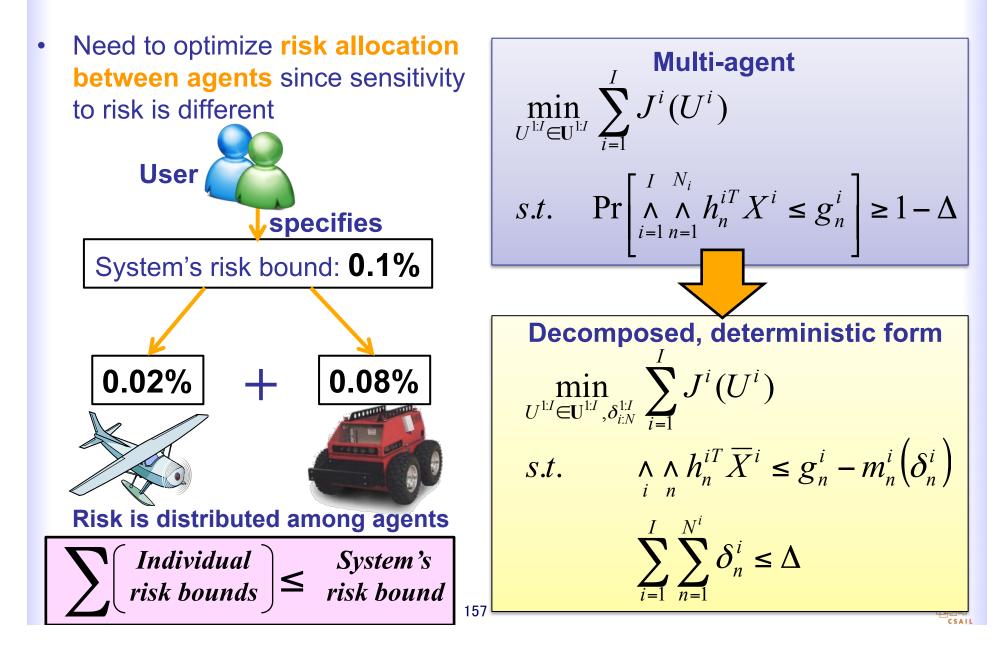
Problem Formulation for Multi-agent

Single agent $\min_{U \in \mathbf{U}} J(U)$ s.t. $\Pr\left[\bigwedge_{n=1}^{N} h_n^T X \le g_n^i\right] \ge 1 - \Delta$

$$\begin{array}{l} \underset{U^{1:I} \in \mathbf{U}^{1:I}}{\min} \sum_{i=1}^{I} J^{i}(U^{i}) \\ s.t. \quad \Pr\left[\bigwedge_{i=1}^{I} \bigwedge_{n=1}^{N_{i}} h_{n}^{iT} X^{i} \leq g_{n}^{i} \right] \geq 1 - \Delta
\end{array}$$

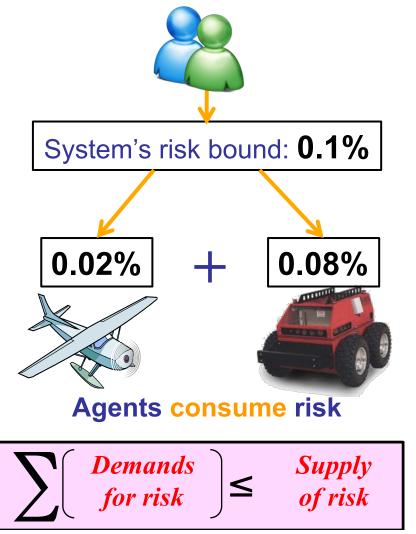
- *i*: Index of agents *I* agents, N^i state constraints for *i* 'th agent
- Minimize aggregate cost
- Bound the probability that all agents satisfy all constraints
 - System fails if one agent violates constraints.

Risk Allocation between Agents



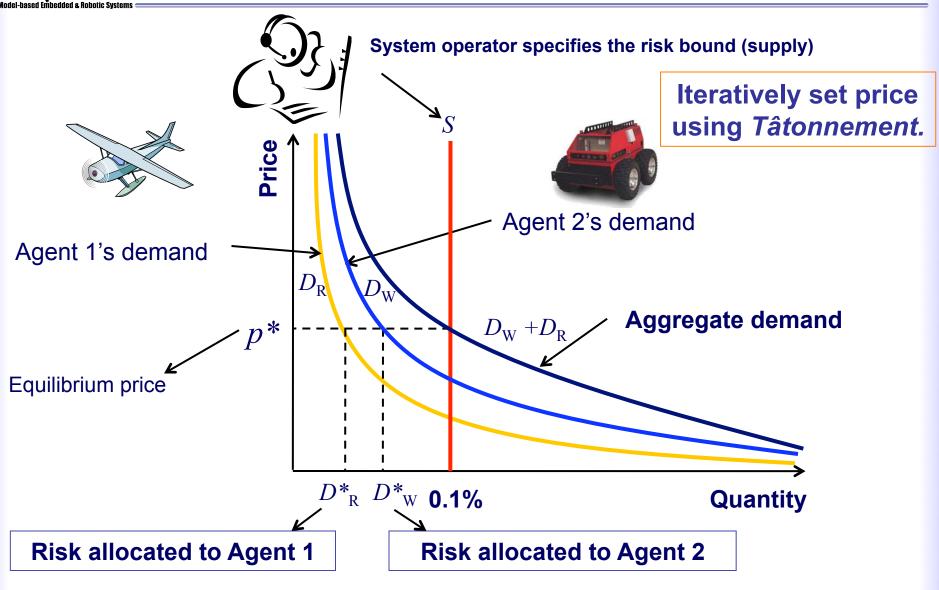
Approach: Decentralized Optimization

User supplies risk by specifying the risk bound

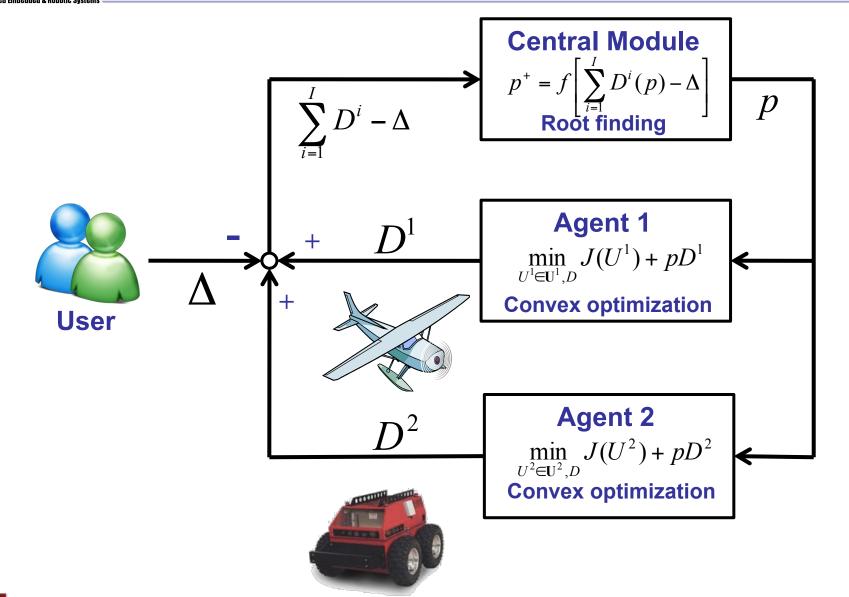


- Each agent is an independent decision maker
- Communicates with others
- Finds globally optimal solution through iterations
- Inspired by an economic process tâtonnement
 - Risk = resource traded in a market
 - Each agent has a *demand for risk* as a function of the price of risk

Market-based Solution to Distributed Risk Allocation (Dual Decomposition)

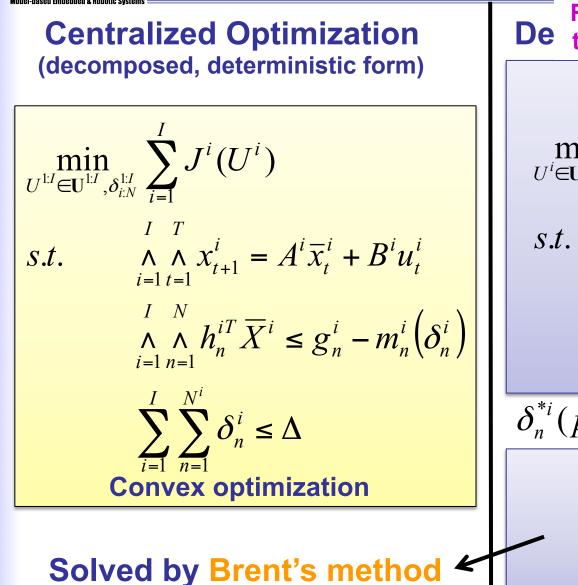


Market-based Iterative Risk Allocation Algorithm



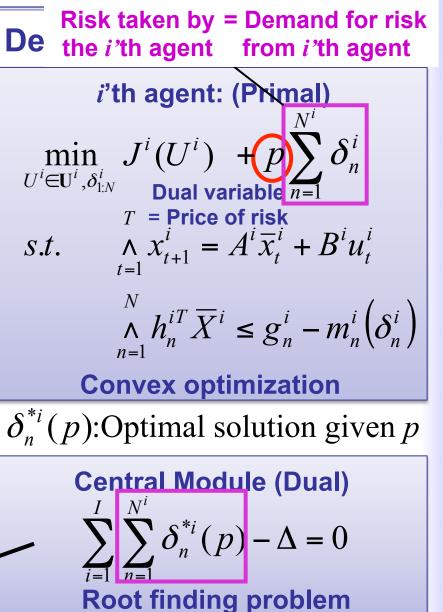
Dual Decomposition

161



Massachusetts Institute of Technology

IIEL S



Properties of MIRA

Existence of decentralized solution

 If the centralized optimization has an optimal solution, it is also an optimal solution for the decentralized optimization

Optimality of decentralized solution

 If the decentralized optimization has an optimal solution, it is also an optimal solution for the centralized solution

Convergence of MIRA

- MIRA is guaranteed to converge to an optimal solution if it exists
- . MIRA is guaranteed to converge to the same solution as the centralized approach

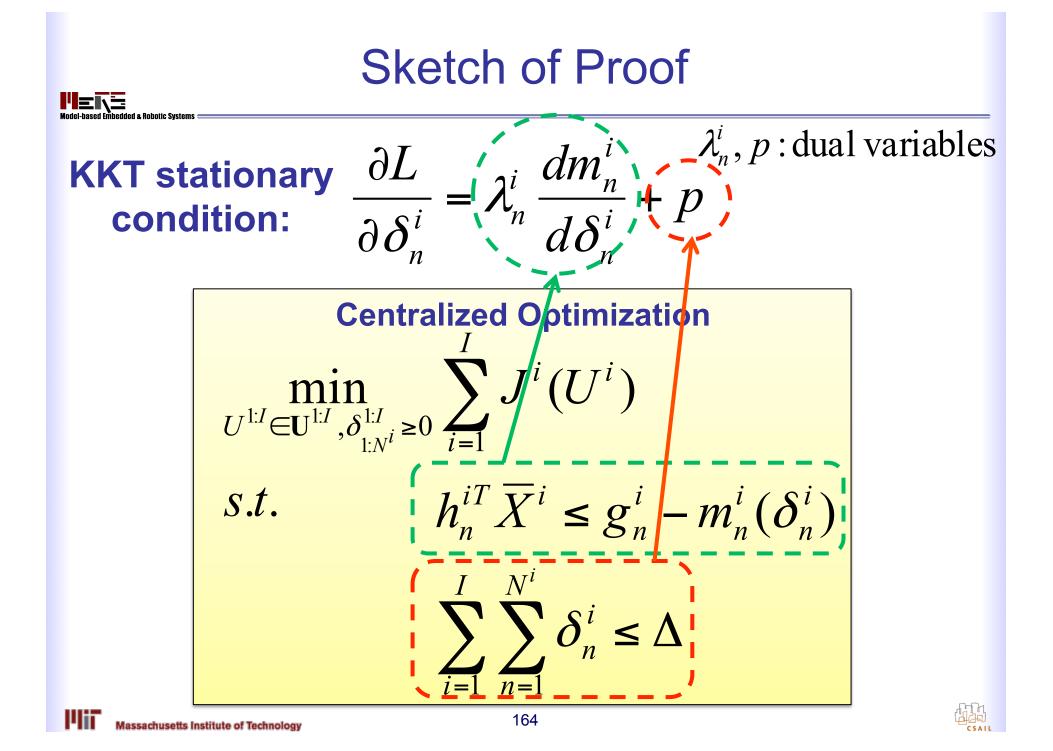
MERE

Proofs

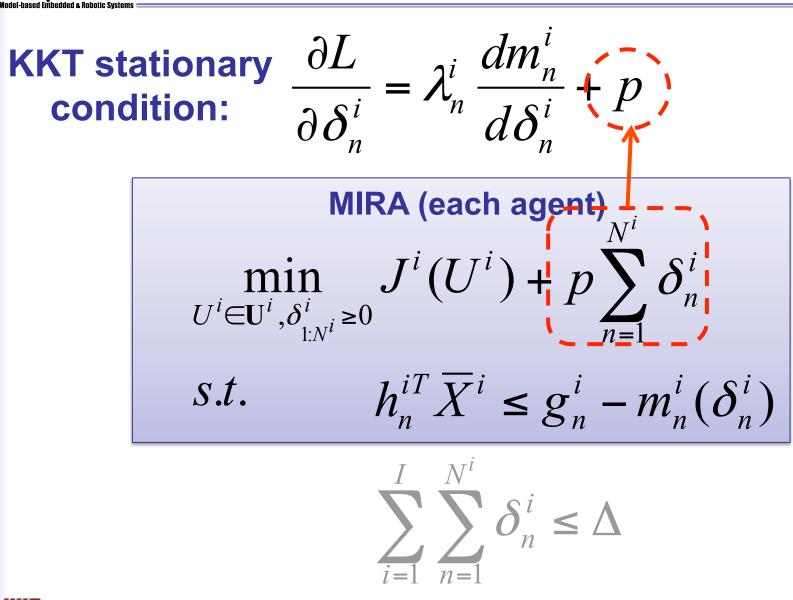
Existence

The KKT conditions of decentralized optimization coincide with the KKT conditions of centralized optimization

 Convergence : Demand functions are continuous; Brent's method is guaranteed to converge for continuous functions



Sketch of Proof



MERE

Sketch of Proof

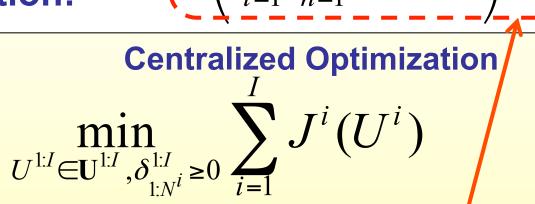
 N^{l}

 δ_n^i

KKT comp. slackness condition:

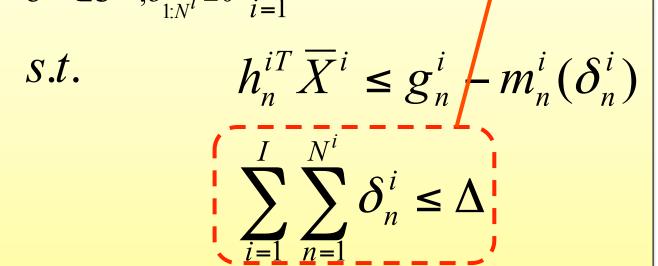
& Robotic Syster

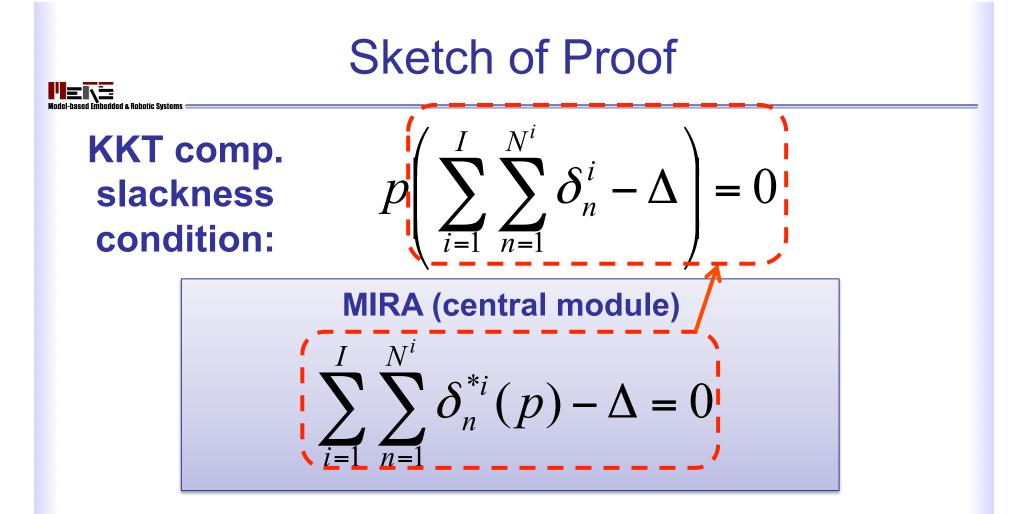
Model-based Embedde



2.

p





• Special case with p=0 is handled separately

Proofs

Existence

• Optimality

The KKT conditions of decentralized optimization coincide with the KKT conditions of centralized optimization

 Convergence : Demand functions are continuous; Brent's method is guaranteed to converge for continuous functions

Definition: Cost of Risk for *i*'th Agent IIEITE

$$egin{aligned} & U^{i\star}(\Delta^{i}) \coloneqq \min & J^{i}(U^{i}) \ & U^{i}, \delta^{i}_{1:N^{i}} \ge 0 & \ & ext{s.t.} & ar{x}^{i}_{t+1} = u^{i}_{\min} \le u^{i}_{\min} \le u^{i}_{n} \ & ar{x}^{iT} ar{X}^{i} \ & ar{\lambda}^{iT}_{n} ar{X}^{i} \ & ar{\lambda}^{iT}_{n} ar{X}^{i} \ & ar{\lambda}^{i}_{n} \ & ar{\lambda}^{i}_{$$

= $oldsymbol{A}^iar{oldsymbol{x}}^i_t+oldsymbol{B}^ioldsymbol{u}^i_t$ $\leq oldsymbol{u}_t^i \leq oldsymbol{u}_{ ext{max}}^i$ $\leq g_n^i - m_n^i(\delta_n^i)$ $\leq \Delta^i$

an achieve is allowed to take up to Δ^i of risk in total

ssachusetts Institute of Technolog

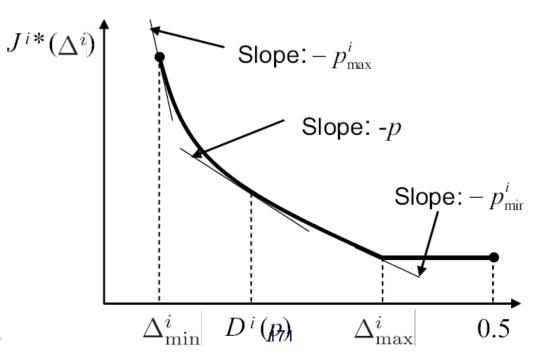
hedded & Robotic System

Each Agent's Optimization Problem IIE 1\E iel-based Embedded & Robotic Syste N^{i} $J^i(\boldsymbol{U}^i) + p \sum \delta^i_n$ min $oldsymbol{U}^i,\!\delta^i_{\scriptscriptstyle 1\cdot N^i}\!\geq\!0$ $n \equiv 1$ $ar{oldsymbol{x}}_{t+1}^i = oldsymbol{A}^iar{oldsymbol{x}}_t^i + oldsymbol{B}^ioldsymbol{u}_t^i$ s.t. $oldsymbol{u}_{\min}^i \leq oldsymbol{u}_t^i \leq oldsymbol{u}_{\max}^i$ $h_n^{iT} \bar{\boldsymbol{X}}^i \leq q_n^i - m_n^i(\delta_n^i)$ $(t = 0 \cdots T - 1, n = 1 \cdots N^{i})$ min $J^{i\star}(\Delta^i) + p\Delta^i$ $\Delta^i < 0.5$

Sketch of Proof

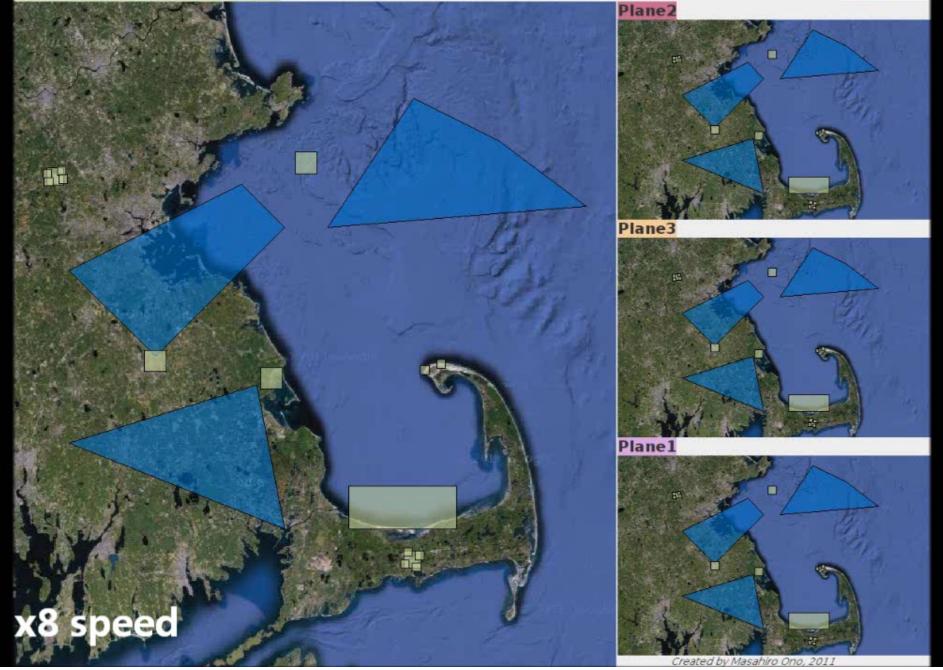
Starting from: convexity of $J^i(U^i)$ (assumption)

- 1. $J^{i\star}(\Delta^i)$ is monotonically decreasing, strictly convex
 - strict convexity of $m_n^i(\delta_n^i)$ inverse of cdf of Gaussian)
- 2. $D^{i}(p)$ is continuous
 - Conjugate Subgradient Theorem (Bertsekas 2009)

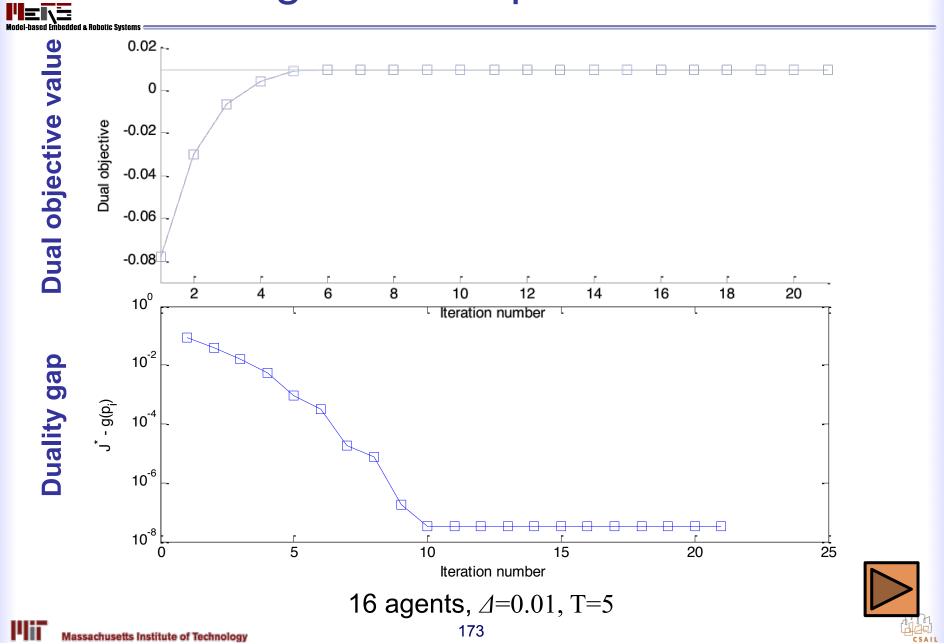


No alerts

Welcome abord! dp-Sulu RH has started



Convergence to Optimal Solution



Result: Scalability

IIEVE

e Robotic Syste

